This repository was archived by the owner on Nov 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMatrixInverse.cpp
72 lines (64 loc) · 1.94 KB
/
MatrixInverse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
//
// algorithm - some algorithms in "Introduction to Algorithms", third edition
// Copyright (C) 2018 lxylxy123456
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
#ifndef MAIN
#define MAIN
#define MAIN_MatrixInverse
#endif
#ifndef FUNC_MatrixInverse
#define FUNC_MatrixInverse
#include "utils.h"
#include "LUPSolve.cpp"
template <typename T>
Matrix<T> MatrixInverse(Matrix<T>& A) {
const size_t n = A.rows;
Matrix<T> LU(A), ans(n, 0), b(n, 1, 0);
PT pi = LUPDecomposition(LU);
for (size_t i = 0; i < n; i++) {
b[i][0] = 1;
Matrix<T> x = LUPSolve(LU, LU, pi, b);
ans = ans.concat_h(x);
b[i][0] = 0;
}
return ans;
}
#endif
#ifdef MAIN_MatrixInverse
template <typename T>
void main_T(const size_t n) {
std::vector<int> int_a, int_b;
random_integers(int_a, -n, n, n * n);
std::vector<T> buf_a(n * n), buf_b(n);
for (size_t i = 0; i < int_a.size(); i++)
buf_a[i] = int_a[i];
Matrix<T> A(n, n, buf_a);
std::cout << A << std::endl;
Matrix<T> B = MatrixInverse(A);
std::cout << B << std::endl;
Matrix<T> C = SquareMatrixMultiply(A, B, (T) 0);
std::cout << C << std::endl;
}
int main(int argc, char *argv[]) {
const size_t type = get_argv(argc, argv, 1, 0);
const size_t n = get_argv(argc, argv, 2, 5);
if (!type)
main_T<double>(n);
else
main_T<Fraction<int>>(n);
return 0;
}
#endif