This repository was archived by the owner on Nov 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLUPSolve.cpp
284 lines (272 loc) · 8.05 KB
/
LUPSolve.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//
// algorithm - some algorithms in "Introduction to Algorithms", third edition
// Copyright (C) 2018 lxylxy123456
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
#ifndef MAIN
#define MAIN
#define MAIN_LUPSolve
#endif
#ifndef FUNC_LUPSolve
#define FUNC_LUPSolve
#include "utils.h"
#include "SquareMatrixMultiply.cpp"
using PT = std::vector<size_t>;
template <typename T>
class Fraction
{
public:
Fraction(): numerator(0), denominator(0) {}
Fraction(T a): numerator(a), denominator(1) {}
Fraction(T a, T b): numerator(a), denominator(b) {
if (!b)
throw std::invalid_argument("zero denominator");
reduce_fraction();
}
Fraction& operator= (const Fraction& rhs) {
if (&rhs == this)
return *this;
if (!rhs.denominator)
throw std::invalid_argument("zero denominator");
this->numerator = rhs.numerator;
this->denominator = rhs.denominator;
return *this;
}
const Fraction operator- () const {
if (!denominator)
throw std::invalid_argument("zero denominator");
return Fraction(-numerator, denominator);
}
const Fraction operator+ (const Fraction& a) const {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
int num = numerator * a.denominator + denominator * a.numerator;
int den = denominator * a.denominator;
return Fraction(num, den);
}
const Fraction operator- (const Fraction& a) const {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
int num = numerator * a.denominator - denominator * a.numerator;
int den = denominator * a.denominator;
return Fraction(num, den);
}
const Fraction operator* (const Fraction& a) const {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
int num = numerator * a.numerator;
int den = denominator * a.denominator;
return Fraction(num, den);
}
const Fraction operator/ (const Fraction& a) const {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
int num = numerator * a.denominator;
int den = denominator * a.numerator;
return Fraction(num, den);
}
Fraction& operator+= (const Fraction& a) {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
int num = numerator * a.denominator + denominator * a.numerator;
int den = denominator * a.denominator;
numerator = num;
denominator = den;
reduce_fraction();
return *this;
}
Fraction& operator-= (const Fraction& a) {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
int num = numerator * a.denominator - denominator * a.numerator;
int den = denominator * a.denominator;
numerator = num;
denominator = den;
reduce_fraction();
return *this;
}
Fraction& operator*= (const Fraction& a) {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
numerator *= a.numerator;
denominator *= a.denominator;
reduce_fraction();
return *this;
}
Fraction& operator/= (const Fraction& a) {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
numerator *= a.denominator;
denominator *= a.numerator;
reduce_fraction();
return *this;
}
bool operator< (const Fraction& a) const {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
return numerator * a.denominator < denominator * a.numerator;
}
bool operator== (const Fraction& a) const {
if (!denominator || !a.denominator)
throw std::invalid_argument("zero denominator");
return numerator == a.numerator && denominator == a.denominator;
}
friend std::ostream& operator<< (std::ostream& os, const Fraction& v) {
if (!v.denominator)
throw std::invalid_argument("zero denominator");
if (v.denominator == 1)
return os << v.numerator;
else
return os << v.numerator << '/' << v.denominator;
}
T numerator;
T denominator;
void reduce_fraction() {
// some idea from "reduce_fraction.c"
T a = numerator, b = denominator, tmp;
while (b) {
tmp = a % b;
a = b;
b = tmp;
}
// now abs(a) == abs(gcd(a, b))
if ((denominator > 0) ^ (a > 0))
a = -a;
// now a == abs(gcd(a, b)) * sgn(b)
numerator /= a;
denominator /= a;
}
};
template <typename T>
Matrix<T> LUPSolve(Matrix<T>& L, Matrix<T>& U, PT& pi, Matrix<T>& b) {
size_t n = L.rows;
Matrix<T> x(n, 1, 0), y(n, 1, 0);
for (size_t i = 0; i < n; i++) {
T& yy = y[i][0];
yy = b[pi[i]][0];
for (size_t j = 0; j < i; j++)
yy -= L[i][j] * y[j][0];
}
for (size_t i = n; i-- > 0; ) {
T& xx = x[i][0];
xx = y[i][0];
for (size_t j = i + 1; j < n; j++)
xx -= U[i][j] * x[j][0];
xx /= U[i][i];
}
return x;
}
template <typename T>
void LUDecomposition(Matrix<T>& A, Matrix<T>& L, Matrix<T>& U) {
const size_t n = A.rows;
U = L = Matrix<T>(n, n, 0);
for (size_t i = 0; i < n; i++)
L[i][i] = 1;
for (size_t k = 0; k < n; k++) {
U[k][k] = A[k][k];
for (size_t i = k + 1; i < n; i++) {
L[i][k] = A[i][k] / U[k][k];
U[k][i] = A[k][i];
}
for (size_t i = k + 1; i < n; i++)
for (size_t j = k + 1; j < n; j++)
A[i][j] -= L[i][k] * U[k][j];
}
}
template <typename T>
PT LUPDecomposition(Matrix<T>& A) {
const size_t n = A.rows;
PT pi(n);
for (size_t i = 0; i < n; i++)
pi[i] = i;
for (size_t k = 0; k < n; k++) {
T p = 0;
size_t kk;
for (size_t i = k; i < n; i++) {
T abs = A[i][k] < (T) 0 ? -A[i][k] : A[i][k];
if (p < abs) {
p = abs;
kk = i;
}
}
if (p == (T) 0)
throw std::invalid_argument("singular matrix");
std::swap(pi[k], pi[kk]);
for (size_t i = 0; i < n; i++)
std::swap(A[k][i], A[kk][i]);
for (size_t i = k + 1; i < n; i++) {
A[i][k] /= A[k][k];
for (size_t j = k + 1; j < n; j++)
A[i][j] -= A[i][k] * A[k][j];
}
}
return pi;
}
#endif
#ifdef MAIN_LUPSolve
template <typename T>
void main_T(const size_t n, const size_t compute) {
std::vector<int> int_a, int_b;
random_integers(int_a, -n, n, n * n);
random_integers(int_b, -n, n, n);
std::vector<T> buf_a(n * n), buf_b(n);
for (size_t i = 0; i < int_a.size(); i++)
buf_a[i] = int_a[i];
for (size_t i = 0; i < int_b.size(); i++)
buf_b[i] = int_b[i];
Matrix<T> A(n, n, buf_a);
Matrix<T> b(n, 1, buf_b);
std::cout << A << std::endl;
Matrix<T> ans1(b), ans2(n, 0);
if (compute >> 0 & 1) {
Matrix<T> A1(A), L(0, 0), U(0, 0);
PT pi(n);
for (size_t i = 0; i < n; i++)
pi[i] = i;
LUDecomposition(A1, L, U);
Matrix<T> x = LUPSolve(L, U, pi, b);
ans2 = ans2.concat_h(x);
Matrix<T> bb = SquareMatrixMultiply(A, x, (T) 0);
ans1 = ans1.concat_h(bb);
}
if (compute >> 1 & 1) {
Matrix<T> A2(A);
PT pi = LUPDecomposition(A2);
Matrix<T> x = LUPSolve(A2, A2, pi, b);
ans2 = ans2.concat_h(x);
Matrix<T> bb = SquareMatrixMultiply(A, x, (T) 0);
ans1 = ans1.concat_h(bb);
}
for (size_t i = 0; i < n; i++) {
output_integers(ans1[i], "\t");
}
std::cout << std::endl;
for (size_t i = 0; i < n; i++) {
std::cout << "\t";
output_integers(ans2[i], "\t");
}
std::cout << std::endl;
}
int main(int argc, char *argv[]) {
const size_t type = get_argv(argc, argv, 1, 0);
const size_t n = get_argv(argc, argv, 2, 5);
const size_t compute = get_argv(argc, argv, 3, 3);
if (!type)
main_T<double>(n, compute);
else
main_T<Fraction<int>>(n, compute);
return 0;
}
#endif