forked from realJustinLee/dumb-chatbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·182 lines (155 loc) · 7.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding=utf8
import json
import random
import torch
import torch.nn as nn
import torch.nn.init as weight_init
import torch.nn.functional as func
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from custom_token import *
with open('config.json') as config_file:
config = json.load(config_file)
USE_CUDA = config['TRAIN']['CUDA']
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder, max_length=20, tie_weights=False):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.max_length = max_length
if USE_CUDA:
self.encoder.cuda()
self.decoder.cuda()
if tie_weights:
self.decoder.embedding.weight = self.encoder.embedding.weight
def forward(self, input_group, target_group=(None, None), teacher_forcing_ratio=0.5):
input_var, input_lens = input_group
encoder_outputs, encoder_hidden = self.encoder(input_var, input_lens)
batch_size = input_var.size(1)
target_var, target_lens = target_group
if target_var is None or target_lens is None:
max_target_length = self.max_length
teacher_forcing_ratio = 0 # without teacher forcing
else:
max_target_length = max(target_lens)
# store all decoder outputs
all_decoder_outputs = Variable(torch.zeros(max_target_length, batch_size, self.decoder.output_size))
# first decoder input
decoder_input = Variable(torch.LongTensor([GO_token] * batch_size), requires_grad=False)
if USE_CUDA:
all_decoder_outputs = all_decoder_outputs.cuda()
decoder_input = decoder_input.cuda()
decoder_hidden = encoder_hidden[:self.decoder.n_layers]
for t in range(max_target_length):
decoder_output, decoder_hidden, decoder_attn = \
self.decoder(decoder_input, decoder_hidden, encoder_outputs)
all_decoder_outputs[t] = decoder_output
# select real target or decoder output
use_teacher_forcing = random.random() < teacher_forcing_ratio
if use_teacher_forcing:
decoder_input = target_var[t]
else:
# decoder_output = F.log_softmax(decoder_output)
top_v, top_i = decoder_output.data.topk(1, dim=1)
decoder_input = Variable(top_i.squeeze(1))
return all_decoder_outputs
def response(self, input_var):
# input_var size (length, 1)
length = input_var.size(0)
input_group = (input_var, [length])
# outputs size (max_length, output_size)
decoder_outputs = self.forward(input_group, teacher_forcing_ratio=0)
# top_v, top_i = decoder_outputs.data.top_k(1, dim=1)
# decoder_index = top_i.squeeze(1)
# return decoder_index
return decoder_outputs
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, self.hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.v = nn.Parameter(weight_init.xavier_uniform(torch.FloatTensor(1, self.hidden_size)))
def forward(self, hidden, encoder_outputs):
attn_energies = self.batch_score(hidden, encoder_outputs)
return func.softmax(attn_energies).unsqueeze(1)
# faster
def batch_score(self, hidden, encoder_outputs):
if self.method == 'dot':
# encoder_outputs size (batch_size, hidden_size, length)
encoder_outputs = encoder_outputs.permute(1, 2, 0)
energy = torch.bmm(hidden.transpose(0, 1), encoder_outputs).squeeze(1)
elif self.method == 'general':
length = encoder_outputs.size(0)
batch_size = encoder_outputs.size(1)
energy = self.attn(encoder_outputs.view(-1, self.hidden_size)).view(length, batch_size, self.hidden_size)
energy = torch.bmm(hidden.transpose(0, 1), energy.permute(1, 2, 0)).squeeze(1)
elif self.method == 'concat':
length = encoder_outputs.size(0)
batch_size = encoder_outputs.size(1)
attn_input = torch.cat((hidden.repeat(length, 1, 1), encoder_outputs), dim=2)
energy = self.attn(attn_input.view(-1, 2 * self.hidden_size)).view(length, batch_size, self.hidden_size)
energy = torch.bmm(self.v.repeat(batch_size, 1, 1), energy.permute(1, 2, 0)).squeeze(1)
return energy
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, n_layers=1, dropout=0.1, bidirectional=True):
super(Encoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.dropout = dropout
self.bidirectional = bidirectional
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=dropout, bidirectional=bidirectional)
if USE_CUDA:
self.gru = self.gru.cuda()
def forward(self, inputs_seqs, input_lens, hidden=None):
# embedded size (max_len, batch_size, hidden_size)
embedded = self.embedding(inputs_seqs)
packed = pack_padded_sequence(embedded, input_lens)
outputs, hidden = self.gru(packed, hidden)
outputs, output_lengths = pad_packed_sequence(outputs)
if self.bidirectional:
# sum bidirectional outputs
outputs = outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:]
# outputs size (max_len, batch_size, hidden_size)
# hidden size (bi * n_layers, batch_size, hidden_size)
return outputs, hidden
class Decoder(nn.Module):
def __init__(self, hidden_size, output_size, attn_method, n_layers=1, dropout=0.1):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=dropout)
self.concat = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
if USE_CUDA:
self.gru = self.gru.cuda()
self.concat = self.concat.cuda()
self.out = self.out.cuda()
self.attn = Attn(attn_method, hidden_size)
def forward(self, input_seqs, last_hidden, encoder_ouputs):
# input_seqs size (batch_size,)
# last_hidden size (n_layers, batch_size, hidden_size)
# encoder_outputs size (max_len, batch_size, hidden_size)
batch_size = input_seqs.size(0)
# embedded size (1, batch_size, hidden_size)
embedded = self.embedding(input_seqs).unsqueeze(0)
# output size (1, batch_size, hidden_size)
output, hidden = self.gru(embedded, last_hidden)
# attn_weights size (batch_size, 1, max_len)
attn_weights = self.attn(output, encoder_ouputs)
# context size (batch_size, 1, hidden_size) = (batch_size, 1, max_len) * (batch_size, max_len, hidden_size)
context = attn_weights.bmm(encoder_ouputs.transpose(0, 1))
# concat_input size (batch_size, hidden_size * 2)
concat_input = torch.cat((output.squeeze(0), context.squeeze(1)), 1)
concat_output = func.tanh(self.concat(concat_input))
# output size (batch_size, output_size)
output = self.out(concat_output)
return output, hidden, attn_weights