-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAC_PER.py
372 lines (314 loc) · 17 KB
/
AC_PER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import copy
import time
from replay_buffer.prioritized_buffer import Buffer
class AC_PER_Agent:
'''
Implementation of DDPG with actor-critic
- Determininistic policy with Gaussian noise added
- max buffer length controls the maximum length of the replay buffer in terms of steps
- train_steps controls # of steps between training iterations
- n_batches controls # of batches to train in each training iteration
- n_update_target_steps controls # of steps between soft updating of target networks
- soft_param controls speed of soft updating of target network
- sigma controls standard deviation of the noise added to action
- end_sigma controls the final value of sigma after sigma_steps
- noise_corr controls the correlation between noise added to actions (default is zero corr)
- the noise is only added during training mode
- clip_gradients controls whether to clip the gradient to [-clip_value, clip_value]
- softmax controls whether to use softmax on the action (post noise addition)
- baseline will train a value function based on state to calculate advantage and reduce variance
- difficult to implement GAE as it requires calculating the advantage for a full episode rollout
which is in conflict with the replay buffer and train during episode style
- standardise will normalise the advantage
- action limit will add a tanh layer to the output of the actor multiplied by the
action limit value i.e. action in range [-value, value]
- actor/critic/baseline models default to the PPO NN architecture for better comparison
'''
def __init__(self, num_actions, obs_size, actor_lr=0.001, critic_lr=0.001, discount=0.99, buffer_max_length=int(1e6),
batch_size=128, train_critic_steps=8, train_actor_steps=16, n_batches=1, update_target_steps=8,
baseline=True, standardise=True, soft_param=0.005,
discrete=False, log_std_init=0.0, log_std_lr=0.001,
clip_gradients=False, clip_value=None,
actor=None, critic=None, baseline_model=None, device='cpu'
):
self.time1 = 0
self.time2 = 0
self.time3 = 0
self.num_actions = num_actions
self.obs_size = obs_size
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.discount = discount
self.buffer_max_length = buffer_max_length
self.batch_size = batch_size
self.train_critic_steps = train_critic_steps
self.train_actor_steps = train_actor_steps
self.n_batches = n_batches
self.update_target_steps = update_target_steps
self.soft_param = soft_param
self.clip_gradients = clip_gradients
self.clip_value = clip_value
self.device = device
self.rng = np.random.default_rng()
self.baseline = baseline
self.standardise = standardise
self.discrete = discrete
self.rng = np.random.default_rng()
if actor:
self.actor = actor
else:
self.actor = nn.Sequential(
nn.Linear(self.obs_size, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, self.num_actions)
)
# self.target_actor = copy.deepcopy(self.actor)
self.actor.to(self.device)
# self.target_actor.to(self.device)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.actor_lr)
if not self.discrete:
self.log_std = nn.Parameter(torch.zeros(self.num_actions, dtype=torch.float32) + log_std_init)
self.log_std_optim = torch.optim.Adam([self.log_std], lr=log_std_lr)
if critic:
self.critic = critic
# self.critic2 = copy.deepcopy(self.critic1)
# for layer in self.critic2.children():
# if hasattr(layer, 'reset_parameters'):
# layer.reset_parameters()
else:
self.critic = nn.Sequential(
nn.Linear(self.obs_size + self.num_actions, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1),
)
# self.critic2 = nn.Sequential(
# nn.Linear(self.obs_size + self.num_actions, 64),
# nn.Tanh(),
# nn.Linear(64, 64),
# nn.Tanh(),
# nn.Linear(64, 1),
# )
self.target_critic = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.critic_lr) #, weight_decay=0.01) # WEIGHT DECAY CAUSES LEARNING ISSUES WITH MOUNTAIN CAR
# self.target_critic2 = copy.deepcopy(self.critic2)
# self.critic2_optimizer = torch.optim.Adam(self.critic2.parameters(), lr=self.critic_lr) #, weight_decay=0.01)
self.critic.to(self.device)
self.target_critic.to(self.device)
# self.critic2.to(self.device)
# self.target_critic2.to(self.device)
self.critic_loss_fn = nn.MSELoss()
if self.baseline:
if baseline_model:
self.baseline_model = baseline_model
else:
self.baseline_model = nn.Sequential(
nn.Linear(self.obs_size, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
self.baseline_optimizer = torch.optim.Adam(self.baseline_model.parameters(), lr=self.critic_lr)
self.baseline_loss_fn = nn.MSELoss()
self.baseline_model.to(self.device)
self.debug_mode = False
self.training_mode = True
self.steps = 0
self.buffer = Buffer(self.buffer_max_length)
self.buffer_filled = False
self.batch_in_buffer = False
def agent_start(self, observation):
observation = torch.tensor(observation, dtype=torch.float32)
action = self.get_action(observation)
self.prev_state = observation
self.prev_action = action
if self.debug_mode: print('Action:', action)
return action.numpy()
def agent_step(self, reward, observation):
observation = torch.tensor(observation, dtype=torch.float32)
reward = torch.tensor([reward], dtype=torch.float32)
if self.training_mode: self.train_mode_actions(reward, observation, False) # must be before new action/obs replaces self.prev_action/self.prev_state
action = self.get_action(observation)
self.prev_state = observation
self.prev_action = action
if self.debug_mode: print('Action:', action)
return action.numpy()
def agent_end(self, reward, observation):
observation = torch.tensor(observation, dtype=torch.float32)
reward = torch.tensor([reward], dtype=torch.float32)
if self.training_mode: self.train_mode_actions(reward, observation, True)
def get_action(self, observation, return_dist=False):
observation = observation.to(self.device)
if self.discrete:
logits = self.actor(observation)
action_dist = torch.distributions.Categorical(logits=logits)
else:
batch_mean = self.actor(observation)
batch_cov = torch.diag((2*self.log_std).exp()).to(self.device)
# print(batch_mean.shape, batch_cov.shape) # (3) and (3,3)
action_dist = torch.distributions.MultivariateNormal(batch_mean, covariance_matrix=batch_cov)
if return_dist:
return action_dist
else:
action = action_dist.sample().detach()
# print(action.shape)
return action.cpu()
def train_mode_actions(self, reward, observation, terminal):
self.steps += 1
# reward, next state, current state terminal status i.e. next_state is irrelevant if terminal
self.add_to_replay_buffer(reward, observation, terminal)
if self.training_condition(): self.train()
if self.update_target_net_condition(): self.update_target_networks()
def update_target_networks(self):
t = self.soft_param
with torch.no_grad():
# for target_param, param, in zip(self.target_actor.parameters(), self.actor.parameters()):
# target_param.data = (1-t) * target_param.data + t * param.data
for target_param, param, in zip(self.target_critic.parameters(), self.critic.parameters()):
target_param.data = (1-t) * target_param.data + t * param.data
# for target_param, param, in zip(self.target_critic1.parameters(), self.critic1.parameters()):
# target_param.data = (1-t) * target_param.data + t * param.data
# for target_param, param, in zip(self.target_critic2.parameters(), self.critic2.parameters()):
# target_param.data = (1-t) * target_param.data + t * param.data
def update_target_net_condition(self):
bool_step_multiple = (self.steps % self.update_target_steps == 0)
return bool_step_multiple and self.batch_in_buffer
def training_condition(self):
bool_step_multiple = (self.steps % self.train_critic_steps == 0) or (self.steps % self.train_actor_steps == 0)
return bool_step_multiple and self.batch_in_buffer
def add_to_replay_buffer(self, reward, observation, terminal):
with torch.no_grad():
old_val = self.critic(torch.cat([self.prev_state, self.prev_action]))
next_action = self.actor(observation)
if terminal:
new_val = reward
else:
new_val = reward + self.discount * self.target_critic(torch.cat([observation, next_action]))
error = abs(old_val - new_val)
terminal_state = torch.tensor([terminal], dtype=torch.bool)
transition = (self.prev_state, self.prev_action, reward, observation, terminal_state)
self.buffer.add(error, transition)
if not self.buffer_filled:
if len(self.buffer) == self.buffer_max_length: self.buffer_filled = True
if not self.batch_in_buffer:
if len(self.buffer) >= self.batch_size * self.n_batches: self.batch_in_buffer = True
def sample_batch(self):
batch, idxs, is_weights = self.buffer.sample(self.batch_size)
batch = [torch.stack(i) for i in [*zip(*batch)]]
is_weights = torch.tensor(is_weights, dtype=torch.float32)
current_states, actions, rewards, next_states, terminal_state = batch
return current_states, actions, rewards, next_states, terminal_state, idxs, is_weights
def train(self):
current_states, actions, rewards, next_states, terminal_state, idxs, is_weights = self.sample_batch()
not_terminal = torch.logical_not(terminal_state)
self.train_batch(current_states, actions, rewards, next_states, not_terminal, idxs, is_weights)
def train_batch(self, current_states, actions, rewards, next_states, not_terminal, idxs, is_weights):
current_states, actions, rewards, next_states, not_terminal, is_weights = self.to_device([current_states, actions, rewards, next_states, not_terminal, is_weights])
if (self.steps % self.train_critic_steps == 0):
self.train_critic(current_states, actions, rewards, next_states, not_terminal, idxs, is_weights)
if (self.steps % self.train_actor_steps == 0):
self.train_actor(current_states, actions)
def train_critic(self, current_states, actions, rewards, next_states, not_terminal, idxs, is_weights):
# clipped double Q-learning
is_weights = torch.FloatTensor(is_weights).to(self.device)
# with torch.no_grad():
# next_actions = self.target_actor(next_states)
# next_state_q = torch.minimum(
# self.target_critic1(torch.cat([next_states, next_actions], dim=-1)),
# self.target_critic2(torch.cat([next_states, next_actions], dim=-1))
# )
with torch.no_grad():
next_actions = self.actor(next_states)
next_state_q = self.target_critic(torch.cat([next_states, next_actions], dim=-1))
targets = (rewards + self.discount * next_state_q * not_terminal)
# compute current state q value = Q(current_state, action)
current_state_q = self.critic(torch.cat([current_states, actions], dim=-1))
assert current_state_q.shape == targets.shape, str(current_state_q.shape) + ' ' + str(targets.shape)
# current_state_q1 = self.critic1(torch.cat([current_states, actions], dim=-1))
# current_state_q2 = self.critic2(torch.cat([current_states, actions], dim=-1))
# assert current_state_q1.shape == targets.shape, str(current_state_q1.shape) + ' ' + str(targets.shape)
loss = (is_weights * F.mse_loss(current_state_q, targets)).mean()
self.critic_optimizer.zero_grad()
loss.backward()
# loss1 = self.critic_loss_fn(targets, current_state_q1)
# self.critic1_optimizer.zero_grad()
# loss1.backward()
# loss2 = self.critic_loss_fn(targets, current_state_q2)
# self.critic2_optimizer.zero_grad()
# loss2.backward()
# if self.clip_gradients:
# torch.nn.utils.clip_grad_value_(self.critic1.parameters(), self.clip_value)
# torch.nn.utils.clip_grad_value_(self.critic2.parameters(), self.clip_value)
# self.critic1_optimizer.step()
# self.critic2_optimizer.step()
# if self.debug_mode: print('Critic 1/2 loss:', loss1.mean().item() + '/', loss2.mean().item())
# train baseline
if self.baseline:
with torch.no_grad():
next_state_v = self.baseline_model(next_states)
baseline_targets = (rewards + self.discount * next_state_v * not_terminal)
baseline = self.baseline_model(current_states)
baseline_loss = (is_weights * F.mse_loss(baseline_targets, baseline)).mean()
self.baseline_optimizer.zero_grad()
baseline_loss.backward()
# if self.clip_gradients: torch.nn.utils.clip_grad_value_(self.baseline_model.parameters(), self.clip_value)
self.baseline_optimizer.step()
if self.debug_mode: print('Baseline loss:', baseline_loss.mean().item())
# update priority
with torch.no_grad():
errors = torch.abs(targets - current_state_q).cpu().numpy()
for i in range(self.batch_size):
idx = idxs[i]
self.buffer.update(idx, errors[i])
# Refer to DPG paper for proof of the deterministic policy gradient
def train_actor(self, current_states, actions):
q_values = self.critic(torch.cat([current_states, self.actor(current_states)], dim=-1))
advantages = self.calculate_advantages(q_values, current_states).to(self.device)
action_dist = self.get_action(current_states, return_dist=True)
log_prob = action_dist.log_prob(actions).unsqueeze(-1)
assert log_prob.shape == advantages.shape, (log_prob.shape, advantages.shape)
loss = -torch.sum(advantages * log_prob) # policy gradient for stochastic policy
self.actor_optimizer.zero_grad()
if not self.discrete: self.log_std_optim.zero_grad()
loss.backward()
self.actor_optimizer.step()
if not self.discrete:
self.log_std_optim.step()
def calculate_advantages(self, q_values, obs=None):
# Computes advantages by (possibly) using GAE, or subtracting a baseline from the estimated Q values
if self.baseline:
with torch.no_grad(): values_unnormalized = self.baseline_model(obs).cpu()
## ensure that the value predictions and q_values have the same dimensionality
## to prevent silent broadcasting errors
assert values_unnormalized.shape == q_values.shape, (values_unnormalized.shape, q_values.shape)
## values were trained with standardized q_values, so ensure
## that the predictions have the same mean and standard deviation as
## the current batch of q_values
values = values_unnormalized * torch.std(q_values) + q_values.mean()
advantages = q_values - values
else:
advantages = q_values.copy()
if self.standardise: advantages = (advantages - advantages.mean()) / (torch.std(advantages) + 0.000001)
return advantages
def to_device(self, list):
device_var = []
for var in list:
var = var.to(self.device)
device_var.append(var)
return device_var
def analyse_train_actor(self):
current_states, actions, _, _, _ = [torch.stack(i, dim=0) for i in [*zip(*random.sample(self.buffer, 32))]]
# not_terminal = torch.logical_not(terminal_state)
actions = self.actor(current_states) # No noise for calculate critic value for training actor
q_values = self.critic1(torch.cat([current_states, actions], dim=-1))
advantages = self.calculate_advantages(q_values, current_states).to(self.device)
return advantages, actions