|
42 | 42 | from lsst.pipe.tasks.visualizeVisit import VisualizeMosaicExpConfig, VisualizeMosaicExpTask |
43 | 43 |
|
44 | 44 |
|
45 | | -def _skyFrameLookup(datasetType, registry, quantumDataId, collections): |
46 | | - """Lookup function to identify sky frames. |
47 | | -
|
48 | | - Parameters |
49 | | - ---------- |
50 | | - datasetType : `lsst.daf.butler.DatasetType` |
51 | | - Dataset to lookup. |
52 | | - registry : `lsst.daf.butler.Registry` |
53 | | - Butler registry to query. |
54 | | - quantumDataId : `lsst.daf.butler.DataCoordinate` |
55 | | - Data id to transform to find sky frames. |
56 | | - The ``detector`` entry will be stripped. |
57 | | - collections : `lsst.daf.butler.CollectionSearch` |
58 | | - Collections to search through. |
59 | | -
|
60 | | - Returns |
61 | | - ------- |
62 | | - results : `list` [`lsst.daf.butler.DatasetRef`] |
63 | | - List of datasets that will be used as sky calibration frames. |
64 | | - """ |
65 | | - newDataId = quantumDataId.subset(registry.dimensions.conform(["instrument", "visit"])) |
66 | | - skyFrames = [] |
67 | | - for dataId in registry.queryDataIds(["visit", "detector"], dataId=newDataId).expanded(): |
68 | | - skyFrame = registry.findDataset( |
69 | | - datasetType, dataId, collections=collections, timespan=dataId.timespan |
70 | | - ) |
71 | | - skyFrames.append(skyFrame) |
72 | | - return skyFrames |
73 | | - |
74 | | - |
75 | 45 | def _reorderAndPadList(inputList, inputKeys, outputKeys, padWith=None): |
76 | 46 | """Match the order of one list to another, padding if necessary. |
77 | 47 |
|
@@ -103,14 +73,6 @@ def _reorderAndPadList(inputList, inputKeys, outputKeys, padWith=None): |
103 | 73 |
|
104 | 74 |
|
105 | 75 | class SkyCorrectionConnections(PipelineTaskConnections, dimensions=("instrument", "visit")): |
106 | | - rawLinker = Input( |
107 | | - doc="Raw data to provide exp-visit linkage to connect calExp inputs to camera/sky calibs.", |
108 | | - name="raw", |
109 | | - multiple=True, |
110 | | - deferLoad=True, |
111 | | - storageClass="Exposure", |
112 | | - dimensions=["instrument", "exposure", "detector"], |
113 | | - ) |
114 | 76 | calExps = Input( |
115 | 77 | doc="Background-subtracted calibrated exposures.", |
116 | 78 | name="calexp", |
@@ -143,7 +105,6 @@ class SkyCorrectionConnections(PipelineTaskConnections, dimensions=("instrument" |
143 | 105 | storageClass="ExposureF", |
144 | 106 | dimensions=["instrument", "physical_filter", "detector"], |
145 | 107 | isCalibration=True, |
146 | | - lookupFunction=_skyFrameLookup, |
147 | 108 | ) |
148 | 109 | camera = PrerequisiteInput( |
149 | 110 | doc="Input camera.", |
@@ -297,7 +258,6 @@ def runQuantum(self, butlerQC, inputRefs, outputRefs): |
297 | 258 | outputRefs.skyCorr, [ref.dataId["detector"] for ref in outputRefs.skyCorr], detectorOrder |
298 | 259 | ) |
299 | 260 | inputs = butlerQC.get(inputRefs) |
300 | | - inputs.pop("rawLinker", None) |
301 | 261 | outputs = self.run(**inputs) |
302 | 262 | butlerQC.put(outputs, outputRefs) |
303 | 263 |
|
|
0 commit comments