-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmodel.py
105 lines (83 loc) · 3.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch import nn
from torchvision.models.vgg import VGG, cfg, make_layers, vgg16
from config import Config
device = torch.device(Config.DEVICE)
class Scale(nn.Module):
def __init__(self, initialized_factor):
super().__init__()
self.factor = torch.tensor(
initialized_factor, requires_grad=True
).float().to(device)
self.eps = 1e-10
def forward(self, x):
norm = torch.pow(x, 2).sum(dim=1, keepdim=True).sqrt() + self.eps
return x / norm * self.factor
class Net(VGG):
def __init__(self):
super().__init__(make_layers(cfg['D']))
self.pool5 = self.features[30]
self.conv_fc6 = self._conv_block(512, 1024)
self.conv_fc7 = self._conv_block(1024, 1024, kernel=1)
self.conv6_1 = self._conv_block(1024, 256, kernel=1)
self.conv6_2 = self._conv_block(256, 512, stride=2)
self.conv7_1 = self._conv_block(512, 128, kernel=1)
self.conv7_2 = self._conv_block(128, 256, stride=2)
self.norm3_3 = Scale(10)
self.norm4_3 = Scale(8)
self.norm5_3 = Scale(5)
self.predict3_3_reg = nn.Conv2d(256, 4, kernel_size=3, padding=1)
self.predict4_3_reg = nn.Conv2d(512, 4, kernel_size=3, padding=1)
self.predict5_3_reg = nn.Conv2d(512, 4, kernel_size=3, padding=1)
self.predict_fc7_reg = nn.Conv2d(1024, 4, kernel_size=3, padding=1)
self.predict6_2_reg = nn.Conv2d(512, 4, kernel_size=3, padding=1)
self.predict7_2_reg = nn.Conv2d(256, 4, kernel_size=3, padding=1)
self.predict3_3_cls = nn.Conv2d(256, 2, kernel_size=3, padding=1)
self.predict4_3_cls = nn.Conv2d(512, 2, kernel_size=3, padding=1)
self.predict5_3_cls = nn.Conv2d(512, 2, kernel_size=3, padding=1)
self.predict_fc7_cls = nn.Conv2d(1024, 2, kernel_size=3, padding=1)
self.predict6_2_cls = nn.Conv2d(512, 2, kernel_size=3, padding=1)
self.predict7_2_cls = nn.Conv2d(256, 2, kernel_size=3, padding=1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
def stride_forward(self, x, start, end):
for layer in self.features[start:end]:
x = layer(x)
return x
def forward(self, x):
f1 = self.stride_forward(x, 0, 16)
f1_norm = self.norm3_3(f1)
f2 = self.stride_forward(f1, 16, 23)
f2_norm = self.norm4_3(f2)
f3 = self.stride_forward(f2, 23, 30)
f3_norm = self.norm5_3(f3)
x = self.pool5(f3)
x = self.conv_fc6(x)
f4 = self.conv_fc7(x)
x = self.conv6_1(f4)
f5 = self.conv6_2(x)
x = self.conv7_1(f5)
f6 = self.conv7_2(x)
return [
self.predict3_3_reg(f1_norm),
self.predict3_3_cls(f1_norm),
self.predict4_3_reg(f2_norm),
self.predict4_3_cls(f2_norm),
self.predict5_3_reg(f3_norm),
self.predict5_3_cls(f3_norm),
self.predict_fc7_reg(f4),
self.predict_fc7_cls(f4),
self.predict6_2_reg(f5),
self.predict6_2_cls(f5),
self.predict7_2_reg(f6),
self.predict7_2_cls(f6)
]
def _conv_block(self, in_channel, out_channel, kernel=3, stride=1):
return nn.Sequential(
nn.Conv2d(in_channel, out_channel, kernel_size=kernel,
padding=kernel // 2, stride=stride),
nn.ReLU(inplace=True)
)