Skip to content

Commit 22f6d4d

Browse files
committed
added the tiles to the jupyter notebook demo file
1 parent 7b3a4dd commit 22f6d4d

10 files changed

+145
-13
lines changed

README.md

Lines changed: 36 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -181,6 +181,13 @@ reverse_distance_calculation_df = reverse_distance_calculation(geocode_data_df,
181181
reverse_distance_calculation_df.head()
182182
```
183183

184+
<p align="left">
185+
<img src="../examples\assets\supply_chain_maps.png" alt="Header Image" width="980"/>
186+
</p>
187+
188+
#### Creating a Supply Chain Map
189+
In order to create a Supply Chain Map, a Workspace Id is required. Please, go to the platform and click on the "three dots" next to the workspace in which you want to save the map. Click on "Copy Workspace Id" and paste the corresponding workspace id instead of "YOUR WORKSPACE ID". If there are no workspaces, please create one using the GUI.
190+
184191
#### Forward Supply Chain Map Locations
185192
Creating a map of locations based on their addresses.
186193

@@ -376,6 +383,10 @@ parameters = sample_data['parameters']
376383
assigned_geocodes_df, centers_df = reverse_center_of_gravity(coordinates_df, parameters, api_key)
377384
```
378385

386+
<p align="left">
387+
<img src="../examples\assets\fixed_center_of_gravity.png" alt="Header Image" width="980"/>
388+
</p>
389+
379390
#### Forward Fixed Center of Gravity
380391
Calculating the optimal locations for new warehouses based on the address location of customers, their respective weights and existing warehouses.
381392

@@ -414,19 +425,12 @@ display(assigned_geocodes_df.head())
414425
display(centers_df.head())
415426
```
416427

417-
from IPython.display import display
418-
from pyloghub.fixed_center_of_gravity import reverse_fixed_center_of_gravity_sample_data, reverse_fixed_center_of_gravity
419-
420-
sample_data = reverse_fixed_center_of_gravity_sample_data()
421-
422-
customers_df = sample_data['customers']
423-
fixed_centers_df = sample_data['fixedCenters']
424-
parameters =sample_data['parameters']
425-
save_scenario = sample_data['saveScenarioParameters']
428+
<p align="left">
429+
<img src="../examples\assets\center_of_gravity_plus.png" alt="Header Image" width="980"/>
430+
</p>
426431

427-
assigned_geocodes_df, centers_df = reverse_fixed_center_of_gravity(customers_df, fixed_centers_df, parameters, api_key, save_scenario)
428-
display(assigned_geocodes_df.head())
429-
display(centers_df.head())
432+
#### Forward Center of Gravity Plus
433+
Calculating the optimal location for new warehouses given the address location of customers and their respective weights, volumes and revenues.
430434

431435
```python
432436
from IPython.display import display
@@ -461,6 +465,10 @@ display(assigned_geocodes_df.head())
461465
display(centers_df.head())
462466
```
463467

468+
<p align="left">
469+
<img src="../examples\assets\nearest_warehouses.png" alt="Header Image" width="980"/>
470+
</p>
471+
464472
#### Forward Nearest Warehouses
465473
Calculating a given number of the nearest warehouses from a customer address.
466474

@@ -497,6 +505,10 @@ display(nearest_warehouses_df.head())
497505
display(unassigned_df.head())
498506
```
499507

508+
<p align="left">
509+
<img src="../examples\assets\network_design_plus.png" alt="Header Image" width="980"/>
510+
</p>
511+
500512
#### Forward Network Design Plus
501513
Finds the optimal number and locations of warehouses based on transport, handling and fixed warehouse costs.
502514

@@ -551,6 +563,10 @@ display(customer_assignement.head())
551563
display(solution_kpis.head())
552564
```
553565

566+
<p align="left">
567+
<img src="../examples\assets\location_planning.png" alt="Header Image" width="980"/>
568+
</p>
569+
554570
#### Forward Location Planning
555571
Optimizing flows from the warehouses to the customers.
556572

@@ -765,14 +781,18 @@ from pyloghub.freight_matrix import reverse_freight_matrix, reverse_freight_matr
765781
766782
sample_data = reverse_freight_matrix_sample_data()
767783
shipments_df = sample_data['shipments']
768-
matrix_id = "b27926604e2ac3af4de90f414e027100792cb7de"
784+
matrix_id = "Your freight matrix id"
769785
770786
evaluated_shipments_df = reverse_freight_matrix(shipments_df, matrix_id, api_key)
771787
evaluated_shipments_df.head()
772788
```
773789
You can create a freight matrix on the Log-hub Platform. Therefore, please create a workspace and click within the workspace on "Create Freight Matrix". There you can provide the matrix a name, select the matrix type and define all other parameters.
774790
To get the matrix id, please click on the "gear" icon. There you can copy & paste the matrix id that is needed in your API request.
775791

792+
<p align="left">
793+
<img src="../examples\assets\CO2_emissions.png" alt="Header Image" width="980"/>
794+
</p>
795+
776796
#### Forward CO2 Emissions Road
777797
Calculating a CO2 footprint based on your shipments transported by road.
778798

@@ -866,6 +886,9 @@ save_scenario = sample_data['saveScenarioParameters']
866886
freight_emissions_df = forward_freight_shipment_emissions_sea(un_locodes_df, parameters, api_key, save_scenario)
867887
freight_emissions_df.head()
868888
```
889+
<p align="left">
890+
<img src="../examples\assets\demand_forecasting.png" alt="Header Image" width="980"/>
891+
</p>
869892

870893
#### Demand Forecasting
871894
Predicting future demand for your products based on the past demand data.

examples/assets/CO2_emissions.png

300 KB
Loading
567 KB
Loading
345 KB
Loading
508 KB
Loading

examples/assets/location_planning.png

565 KB
Loading
480 KB
Loading
588 KB
Loading

examples/assets/supply_chain_maps.png

707 KB
Loading

examples/pyloghub_package_demo.ipynb

Lines changed: 109 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1021,6 +1021,27 @@
10211021
"reverse_distance_calculation_df.head()"
10221022
]
10231023
},
1024+
{
1025+
"attachments": {},
1026+
"cell_type": "markdown",
1027+
"id": "24542e78",
1028+
"metadata": {},
1029+
"source": [
1030+
"<p align=\"left\">\n",
1031+
" <img src=\"../examples\\assets\\supply_chain_maps.png\" alt=\"Header Image\" width=\"980\"/>\n",
1032+
"</p>"
1033+
]
1034+
},
1035+
{
1036+
"attachments": {},
1037+
"cell_type": "markdown",
1038+
"id": "e0ab68f0",
1039+
"metadata": {},
1040+
"source": [
1041+
"#### Creating a Supply Chain Map\n",
1042+
"In order to create a Supply Chain Map, a Workspace Id is required. Please, go to the platform and click on the \"three dots\" next to the workspace in which you want to save the map. Click on \"Copy Workspace Id\" and paste the corresponding workspace id instead of \"YOUR WORKSPACE ID\". If there are no workspaces, please create one using the GUI."
1043+
]
1044+
},
10241045
{
10251046
"attachments": {},
10261047
"cell_type": "markdown",
@@ -3127,6 +3148,17 @@
31273148
"display(centers_df.head())"
31283149
]
31293150
},
3151+
{
3152+
"attachments": {},
3153+
"cell_type": "markdown",
3154+
"id": "69accbb7",
3155+
"metadata": {},
3156+
"source": [
3157+
"<p align=\"left\">\n",
3158+
" <img src=\"../examples\\assets\\fixed_center_of_gravity.png\" alt=\"Header Image\" width=\"980\"/>\n",
3159+
"</p>"
3160+
]
3161+
},
31303162
{
31313163
"attachments": {},
31323164
"cell_type": "markdown",
@@ -3609,6 +3641,17 @@
36093641
"display(centers_df.head())"
36103642
]
36113643
},
3644+
{
3645+
"attachments": {},
3646+
"cell_type": "markdown",
3647+
"id": "ebba2003",
3648+
"metadata": {},
3649+
"source": [
3650+
"<p align=\"left\">\n",
3651+
" <img src=\"../examples\\assets\\center_of_gravity_plus.png\" alt=\"Header Image\" width=\"980\"/>\n",
3652+
"</p>"
3653+
]
3654+
},
36123655
{
36133656
"attachments": {},
36143657
"cell_type": "markdown",
@@ -4096,6 +4139,17 @@
40964139
"display(centers_df.head())"
40974140
]
40984141
},
4142+
{
4143+
"attachments": {},
4144+
"cell_type": "markdown",
4145+
"id": "c70299a7",
4146+
"metadata": {},
4147+
"source": [
4148+
"<p align=\"left\">\n",
4149+
" <img src=\"../examples\\assets\\nearest_warehouses.png\" alt=\"Header Image\" width=\"980\"/>\n",
4150+
"</p>"
4151+
]
4152+
},
40994153
{
41004154
"attachments": {},
41014155
"cell_type": "markdown",
@@ -4541,6 +4595,17 @@
45414595
"display(unassigned_df.head())"
45424596
]
45434597
},
4598+
{
4599+
"attachments": {},
4600+
"cell_type": "markdown",
4601+
"id": "47f887ba",
4602+
"metadata": {},
4603+
"source": [
4604+
"<p align=\"left\">\n",
4605+
" <img src=\"../examples\\assets\\network_design_plus.png\" alt=\"Header Image\" width=\"980\"/>\n",
4606+
"</p>"
4607+
]
4608+
},
45444609
{
45454610
"attachments": {},
45464611
"cell_type": "markdown",
@@ -5610,6 +5675,17 @@
56105675
"display(solution_kpis.head())"
56115676
]
56125677
},
5678+
{
5679+
"attachments": {},
5680+
"cell_type": "markdown",
5681+
"id": "0b01f293",
5682+
"metadata": {},
5683+
"source": [
5684+
"<p align=\"left\">\n",
5685+
" <img src=\"../examples\\assets\\location_planning.png\" alt=\"Header Image\" width=\"980\"/>\n",
5686+
"</p>"
5687+
]
5688+
},
56135689
{
56145690
"attachments": {},
56155691
"cell_type": "markdown",
@@ -6452,6 +6528,17 @@
64526528
"display(solution_kpis.head())"
64536529
]
64546530
},
6531+
{
6532+
"attachments": {},
6533+
"cell_type": "markdown",
6534+
"id": "b4514f49",
6535+
"metadata": {},
6536+
"source": [
6537+
"<p align=\"left\">\n",
6538+
" <img src=\"../examples\\assets\\milkrun_optimization.png\" alt=\"Header Image\" width=\"980\"/>\n",
6539+
"</p>"
6540+
]
6541+
},
64556542
{
64566543
"attachments": {},
64576544
"cell_type": "markdown",
@@ -9745,6 +9832,17 @@
97459832
"To get the matrix id, please click on the \"gear\" icon. There you can copy & paste the matrix id that is needed in your API request."
97469833
]
97479834
},
9835+
{
9836+
"attachments": {},
9837+
"cell_type": "markdown",
9838+
"id": "e0890b8b",
9839+
"metadata": {},
9840+
"source": [
9841+
"<p align=\"left\">\n",
9842+
" <img src=\"../examples\\assets\\CO2_emissions.png\" alt=\"Header Image\" width=\"980\"/>\n",
9843+
"</p>"
9844+
]
9845+
},
97489846
{
97499847
"attachments": {},
97509848
"cell_type": "markdown",
@@ -11222,6 +11320,17 @@
1122211320
"freight_emissions_df.head()"
1122311321
]
1122411322
},
11323+
{
11324+
"attachments": {},
11325+
"cell_type": "markdown",
11326+
"id": "d2b73060",
11327+
"metadata": {},
11328+
"source": [
11329+
"<p align=\"left\">\n",
11330+
" <img src=\"../examples\\assets\\demand_forecasting.png\" alt=\"Header Image\" width=\"980\"/>\n",
11331+
"</p>"
11332+
]
11333+
},
1122511334
{
1122611335
"attachments": {},
1122711336
"cell_type": "markdown",

0 commit comments

Comments
 (0)