-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathhelper_collapse_df.R
46 lines (41 loc) · 1.25 KB
/
helper_collapse_df.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# helper functions to collapse list to data frame if some true clusters (rows) are
# missing for some methods (fill empty values with zeros or NAs, and return as a data
# frame); and remove entries for methods that are entirely missing
# collapse data frame with zeros as padding
collapse_df_zeros <- function(l) {
# remove entries for missing methods
missing <- sapply(l, is.null)
l <- l[!missing]
# total number of true clusters
max_len <- max(sapply(l, length))
# empty matrix
m <- matrix(NA, nrow = max_len, ncol = length(l))
colnames(m) <- names(l)
rownames(m) <- 1:max_len
# fill with values
for (i in 1:length(l)) {
m[, i][names(l[[i]])] <- l[[i]]
}
# set remaining NAs to 0
m[which(is.na(m))] <- 0
# return as data frame
as.data.frame(m)
}
# collapse data frame with zeros as padding
collapse_df_NAs <- function(l) {
# remove entries for missing methods
missing <- sapply(l, is.null)
l <- l[!missing]
# total number of true clusters
max_len <- max(sapply(l, length))
# empty matrix
m <- matrix(NA, nrow = max_len, ncol = length(l))
colnames(m) <- names(l)
rownames(m) <- 1:max_len
# fill with values
for (i in 1:length(l)) {
m[, i][names(l[[i]])] <- l[[i]]
}
# return as data frame
as.data.frame(m)
}