diff --git a/djinn/djinn_fns.py b/djinn/djinn_fns.py index 04b2fc4..6bf43cb 100755 --- a/djinn/djinn_fns.py +++ b/djinn/djinn_fns.py @@ -16,6 +16,8 @@ # For details about use and distribution, please read DJINN/LICENSE . ############################################################################### +from __future__ import print_function + import tensorflow as tf import numpy as np from sklearn.tree import _tree @@ -351,14 +353,15 @@ def multilayer_perceptron(x, weights, biases): train_accur[pp][epoch] = avg_cost valid_accur[pp][epoch] = cost.eval({x: xtest, y: ytest, keep_prob:dropout_keep_prob}) # display training progresss - if epoch % display_step == 0: + if epoch % display_step == 0 or epoch == (training_epochs-1): if regression == True: - print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) + print("Epoch:", '%04d' % (epoch+1),'/ %d' %(training_epochs), "cost=", "{:.9f}".format(avg_cost), end='\r') #for classification, print cost and accuracy: else: avg_accuracy = accuracy.eval({x: xtrain, y: ytrain, keep_prob:dropout_keep_prob}) - print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost), - "accuracy=", "{:.3f}".format(avg_accuracy)) + print("Epoch:", '%04d' % (epoch+1),'/ %d'%(training_epochs), "cost=", "{:.9f}".format(avg_cost), + "accuracy=", "{:.3f}".format(avg_accuracy),end='\r') + print("") print("Optimization Finished!") #save final weights/biases @@ -646,15 +649,16 @@ def tf_continue_training(regression, xscale, yscale, x1, y1, ntrees, keep_prob:dropout_keep_prob}) avg_cost += c / total_batch # display training progresss - if epoch % display_step == 0: + if epoch % display_step == 0 or epoch == (training_epochs-1): if regression == True: - print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) + print("Epoch:", '%04d' % (epoch+1),'/ %d' %(training_epochs), "cost=", "{:.9f}".format(avg_cost), end='\r') #for classification, print cost and accuracy: else: avg_accuracy = sess[pp].run(accuracy, feed_dict = {x: xtrain, y: ytrain, keep_prob:dropout_keep_prob}) - print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost), - "accuracy=", "{:.3f}".format(avg_accuracy)) + print("Epoch:", '%04d' % (epoch+1), '/ %d' %(training_epochs), "cost=", "{:.9f}".format(avg_cost), + "accuracy=", "{:.3f}".format(avg_accuracy), end='\r') + print("") print("Optimization Finished!") #save model and nn info