Skip to content

Commit 28d33f4

Browse files
Project Euler 70 Solution (TheAlgorithms#3041)
* Add solution for Project Euler 70, Fixes: TheAlgorithms#2695 * Remove parameter from solution() * Add tests for all functions, add fstring and positional arg for solution() * Rename directory to 070 * Move up explanation to module code block * Move solution() below helper functions, rename variables * Remove whitespace from defining min_numerator * Add whitespace * Improve type hints with typing.List Co-authored-by: Dhruv Manilawala <[email protected]>
1 parent d0bc9e2 commit 28d33f4

File tree

3 files changed

+121
-0
lines changed

3 files changed

+121
-0
lines changed

DIRECTORY.md

+2
Original file line numberDiff line numberDiff line change
@@ -697,6 +697,8 @@
697697
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py)
698698
* Problem 069
699699
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py)
700+
* Problem 070
701+
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py)
700702
* Problem 071
701703
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py)
702704
* Problem 072

project_euler/problem_070/__init__.py

Whitespace-only changes.

project_euler/problem_070/sol1.py

+119
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,119 @@
1+
"""
2+
Project Euler Problem 70: https://projecteuler.net/problem=70
3+
4+
Euler's Totient function, φ(n) [sometimes called the phi function], is used to
5+
determine the number of positive numbers less than or equal to n which are
6+
relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than
7+
nine and relatively prime to nine, φ(9)=6.
8+
9+
The number 1 is considered to be relatively prime to every positive number, so
10+
φ(1)=1.
11+
12+
Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation
13+
of 79180.
14+
15+
Find the value of n, 1 < n < 10^7, for which φ(n) is a permutation of n and
16+
the ratio n/φ(n) produces a minimum.
17+
18+
-----
19+
20+
This is essentially brute force. Calculate all totients up to 10^7 and
21+
find the minimum ratio of n/φ(n) that way. To minimize the ratio, we want
22+
to minimize n and maximize φ(n) as much as possible, so we can store the
23+
minimum fraction's numerator and denominator and calculate new fractions
24+
with each totient to compare against. To avoid dividing by zero, I opt to
25+
use cross multiplication.
26+
27+
References:
28+
Finding totients
29+
https://en.wikipedia.org/wiki/Euler's_totient_function#Euler's_product_formula
30+
"""
31+
from typing import List
32+
33+
34+
def get_totients(max_one: int) -> List[int]:
35+
"""
36+
Calculates a list of totients from 0 to max_one exclusive, using the
37+
definition of Euler's product formula.
38+
39+
>>> get_totients(5)
40+
[0, 1, 1, 2, 2]
41+
42+
>>> get_totients(10)
43+
[0, 1, 1, 2, 2, 4, 2, 6, 4, 6]
44+
"""
45+
totients = [0] * max_one
46+
47+
for i in range(0, max_one):
48+
totients[i] = i
49+
50+
for i in range(2, max_one):
51+
if totients[i] == i:
52+
for j in range(i, max_one, i):
53+
totients[j] -= totients[j] // i
54+
55+
return totients
56+
57+
58+
def has_same_digits(num1: int, num2: int) -> bool:
59+
"""
60+
Return True if num1 and num2 have the same frequency of every digit, False
61+
otherwise.
62+
63+
digits[] is a frequency table where the index represents the digit from
64+
0-9, and the element stores the number of appearances. Increment the
65+
respective index every time you see the digit in num1, and decrement if in
66+
num2. At the end, if the numbers have the same digits, every index must
67+
contain 0.
68+
69+
>>> has_same_digits(123456789, 987654321)
70+
True
71+
72+
>>> has_same_digits(123, 12)
73+
False
74+
75+
>>> has_same_digits(1234566, 123456)
76+
False
77+
"""
78+
digits = [0] * 10
79+
80+
while num1 > 0 and num2 > 0:
81+
digits[num1 % 10] += 1
82+
digits[num2 % 10] -= 1
83+
num1 //= 10
84+
num2 //= 10
85+
86+
for digit in digits:
87+
if digit != 0:
88+
return False
89+
90+
return True
91+
92+
93+
def solution(max: int = 10000000) -> int:
94+
"""
95+
Finds the value of n from 1 to max such that n/φ(n) produces a minimum.
96+
97+
>>> solution(100)
98+
21
99+
100+
>>> solution(10000)
101+
4435
102+
"""
103+
104+
min_numerator = 1 # i
105+
min_denominator = 0 # φ(i)
106+
totients = get_totients(max + 1)
107+
108+
for i in range(2, max + 1):
109+
t = totients[i]
110+
111+
if i * min_denominator < min_numerator * t and has_same_digits(i, t):
112+
min_numerator = i
113+
min_denominator = t
114+
115+
return min_numerator
116+
117+
118+
if __name__ == "__main__":
119+
print(f"{solution() = }")

0 commit comments

Comments
 (0)