-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkNN.py
123 lines (109 loc) · 5.06 KB
/
kNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from numpy import *
import operator
from os import listdir
def createDataSet():
group = array([[1.0, 1.1],[1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] #dataSet数据0维的维数
diffMat = tile(inX, (dataSetSize, 1)) - dataSet #tile函数构造数组
sqDiffMat = diffMat**2 #每个元素的平方
sqDistances = sqDiffMat.sum(axis=1) #列方向相加 array([2.21, 2. , 0. , 0.01])
distances = sqDistances**0.5 #开方
sortedDistIndicies = distances.argsort() #排序,按当前排序后的序号生成的列表[2, 3, 1, 0]
classCount={}
for i in range(k):# [0, 1, 2]
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+ 1 #classCount{"B": 2, "A": 1}
sortedClassCount = sorted(classCount.items(),#迭代 [("B", 2), ("A", 1)] 可以用for循环来提取键,值
key = operator.itemgetter(1), reverse=True) #operator.itemgetter(1):使用2,1来做为排序依据
return sortedClassCount[0][0]
def file2matrix(filename):
fr = open(filename) #
arrayOLines = fr.readlines() #读取所有行
numberOfLines = len(arrayOLines) #行的长度
returnMat = zeros((numberOfLines, 3)) #创建一个0数组
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip() #用于移除字符串头尾指定的字符(默认为空格)
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
if listFromLine[-1] == "largeDoses": #把最后一列的喜欢,魅力,用数值表示
classLabelVector.append(3)
elif listFromLine[-1] == "smallDoses":
classLabelVector.append(2)
else:
classLabelVector.append(1)
index += 1
return returnMat, classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m, 1))
normDataSet = normDataSet/tile(ranges, (m, 1))
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :],
datingLabels[numTestVecs:m], 3)
print ("the classifier came back with: %d, the real answer is: %d"
% (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print ('the total error rate is: %f' % (errorCount/float(numTestVecs)))
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("liters of ice cream condumed per year?"))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3)
print ("You will probably like this person: ",resultList[classifierResult - 1])
def img2vector(filename):
returnVect = zeros((1, 1024)) #创建一个1*1024数组
fr = open(filename)
for i in range(32):
lineStr = fr.readline()#读取一行
for j in range(32):
returnVect[0, 32*i + j] = int(lineStr[j])#平铺
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #列出文件夹下所有的文件
m = len(trainingFileList)
trainingMat = zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr) #
trainingMat[i, :] = img2vector('trainingDigits/%s' % fileNameStr) #打开文件并处理
testFileList = listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest,
trainingMat, hwLabels, 3)
print ("the classifier came back with: %d, the real answer is: %d"
% (classifierResult, classNumStr))
if (classifierResult != classNumStr):
errorCount += 1.0
print ("\nthe total number of errors is: %d" % errorCount)
print ("\nthe total error rate is: %f" % (errorCount/float(mTest)))