|
| 1 | +import asyncio |
| 2 | +import logging |
| 3 | +from dataclasses import dataclass |
| 4 | +from datetime import datetime |
| 5 | +from typing import Union |
| 6 | + |
| 7 | +import aiofiles |
| 8 | +from dotenv import load_dotenv |
| 9 | +from livekit.agents import ( |
| 10 | + AutoSubscribe, |
| 11 | + JobContext, |
| 12 | + WorkerOptions, |
| 13 | + cli, |
| 14 | + multimodal, |
| 15 | + utils, |
| 16 | +) |
| 17 | +from livekit.agents.llm import ChatMessage |
| 18 | +from livekit.agents.multimodal.multimodal_agent import EventTypes |
| 19 | +from livekit.plugins import openai |
| 20 | + |
| 21 | + |
| 22 | +@dataclass |
| 23 | +class EventLog: |
| 24 | + eventname: str | None |
| 25 | + """name of recorded event""" |
| 26 | + time: str = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] |
| 27 | + """time the event is recorded""" |
| 28 | + |
| 29 | + |
| 30 | +@dataclass |
| 31 | +class TranscriptionLog: |
| 32 | + role: str | None |
| 33 | + """role of the speaker""" |
| 34 | + transcription: str | None |
| 35 | + """transcription of speech""" |
| 36 | + time: str = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] |
| 37 | + """time the event is recorded""" |
| 38 | + |
| 39 | + |
| 40 | +class ConversationPersistor(utils.EventEmitter[EventTypes]): |
| 41 | + def __init__( |
| 42 | + self, |
| 43 | + *, |
| 44 | + model: multimodal.MultimodalAgent | None, |
| 45 | + log: str | None, |
| 46 | + transcriptions_only: bool = False, |
| 47 | + ): |
| 48 | + """ |
| 49 | + Initializes a ConversationPersistor instance which records the events and transcriptions of a MultimodalAgent. |
| 50 | +
|
| 51 | + Args: |
| 52 | + model (multimodal.MultimodalAgent): an instance of a MultiModalAgent |
| 53 | + log (str): name of the external file to record events in |
| 54 | + transcriptions_only (bool): a boolean variable to determine if only transcriptions will be recorded, False by default |
| 55 | + user_transcriptions (arr): list of user transcriptions |
| 56 | + agent_transcriptions (arr): list of agent transcriptions |
| 57 | + events (arr): list of all events |
| 58 | + log_q (asyncio.Queue): a queue of EventLog and TranscriptionLog |
| 59 | +
|
| 60 | + """ |
| 61 | + super().__init__() |
| 62 | + |
| 63 | + self._model = model |
| 64 | + self._log = log |
| 65 | + self._transcriptions_only = transcriptions_only |
| 66 | + |
| 67 | + self._user_transcriptions = [] |
| 68 | + self._agent_transcriptions = [] |
| 69 | + self._events = [] |
| 70 | + |
| 71 | + self._log_q = asyncio.Queue[Union[EventLog, TranscriptionLog, None]]() |
| 72 | + |
| 73 | + @property |
| 74 | + def log(self) -> str | None: |
| 75 | + return self._log |
| 76 | + |
| 77 | + @property |
| 78 | + def model(self) -> multimodal.MultimodalAgent | None: |
| 79 | + return self._model |
| 80 | + |
| 81 | + @property |
| 82 | + def user_transcriptions(self) -> dict: |
| 83 | + return self._user_transcriptions |
| 84 | + |
| 85 | + @property |
| 86 | + def agent_transcriptions(self) -> dict: |
| 87 | + return self._agent_transcriptions |
| 88 | + |
| 89 | + @property |
| 90 | + def events(self) -> dict: |
| 91 | + return self._events |
| 92 | + |
| 93 | + @log.setter |
| 94 | + def log(self, newlog: str | None) -> None: |
| 95 | + self._log = newlog |
| 96 | + |
| 97 | + async def _main_atask(self) -> None: |
| 98 | + # Writes to file asynchronously |
| 99 | + while True: |
| 100 | + log = await self._log_q.get() |
| 101 | + |
| 102 | + if log is None: |
| 103 | + break |
| 104 | + |
| 105 | + async with aiofiles.open(self._log, "a") as file: |
| 106 | + if type(log) is EventLog and not self._transcriptions_only: |
| 107 | + self._events.append(log) |
| 108 | + await file.write("\n" + log.time + " " + log.eventname) |
| 109 | + |
| 110 | + if type(log) is TranscriptionLog: |
| 111 | + if log.role == "user": |
| 112 | + self._user_transcriptions.append(log) |
| 113 | + else: |
| 114 | + self._agent_transcriptions.append(log) |
| 115 | + |
| 116 | + await file.write( |
| 117 | + "\n" + log.time + " " + log.role + " " + log.transcription |
| 118 | + ) |
| 119 | + |
| 120 | + async def aclose(self) -> None: |
| 121 | + # Exits |
| 122 | + self._log_q.put_nowait(None) |
| 123 | + await self._main_task |
| 124 | + |
| 125 | + def start(self) -> None: |
| 126 | + # Listens for emitted MultimodalAgent events |
| 127 | + self._main_task = asyncio.create_task(self._main_atask()) |
| 128 | + |
| 129 | + @self._model.on("user_started_speaking") |
| 130 | + def _user_started_speaking(): |
| 131 | + event = EventLog(eventname="user_started_speaking") |
| 132 | + self._log_q.put_nowait(event) |
| 133 | + |
| 134 | + @self._model.on("user_stopped_speaking") |
| 135 | + def _user_stopped_speaking(): |
| 136 | + event = EventLog(eventname="user_stopped_speaking") |
| 137 | + self._log_q.put_nowait(event) |
| 138 | + |
| 139 | + @self._model.on("agent_started_speaking") |
| 140 | + def _agent_started_speaking(): |
| 141 | + event = EventLog(eventname="agent_started_speaking") |
| 142 | + self._log_q.put_nowait(event) |
| 143 | + |
| 144 | + @self._model.on("agent_stopped_speaking") |
| 145 | + def _agent_stopped_speaking(): |
| 146 | + transcription = TranscriptionLog( |
| 147 | + role="agent", |
| 148 | + transcription=(self._model._playing_handle._tr_fwd.played_text)[1:], |
| 149 | + ) |
| 150 | + self._log_q.put_nowait(transcription) |
| 151 | + |
| 152 | + event = EventLog(eventname="agent_stopped_speaking") |
| 153 | + self._log_q.put_nowait(event) |
| 154 | + |
| 155 | + @self._model.on("user_speech_committed") |
| 156 | + def _user_speech_committed(user_msg: ChatMessage): |
| 157 | + transcription = TranscriptionLog( |
| 158 | + role="user", transcription=user_msg.content |
| 159 | + ) |
| 160 | + self._log_q.put_nowait(transcription) |
| 161 | + |
| 162 | + event = EventLog(eventname="user_speech_committed") |
| 163 | + self._log_q.put_nowait(event) |
| 164 | + |
| 165 | + @self._model.on("agent_speech_committed") |
| 166 | + def _agent_speech_committed(): |
| 167 | + event = EventLog(eventname="agent_speech_committed") |
| 168 | + self._log_q.put_nowait(event) |
| 169 | + |
| 170 | + @self._model.on("agent_speech_interrupted") |
| 171 | + def _agent_speech_interrupted(): |
| 172 | + event = EventLog(eventname="agent_speech_interrupted") |
| 173 | + self._log_q.put_nowait(event) |
| 174 | + |
| 175 | + @self._model.on("function_calls_collected") |
| 176 | + def _function_calls_collected(): |
| 177 | + event = EventLog(eventname="function_calls_collected") |
| 178 | + self._log_q.put_nowait(event) |
| 179 | + |
| 180 | + @self._model.on("function_calls_finished") |
| 181 | + def _function_calls_finished(): |
| 182 | + event = EventLog(eventname="function_calls_finished") |
| 183 | + self._log_q.put_nowait(event) |
| 184 | + |
| 185 | + |
| 186 | +load_dotenv() |
| 187 | + |
| 188 | +logger = logging.getLogger("my-worker") |
| 189 | +logger.setLevel(logging.INFO) |
| 190 | + |
| 191 | + |
| 192 | +async def entrypoint(ctx: JobContext): |
| 193 | + agent = multimodal.MultimodalAgent( |
| 194 | + model=openai.realtime.RealtimeModel( |
| 195 | + voice="alloy", |
| 196 | + temperature=0.8, |
| 197 | + instructions="You are a helpful assistant.", |
| 198 | + turn_detection=openai.realtime.ServerVadOptions( |
| 199 | + threshold=0.6, prefix_padding_ms=200, silence_duration_ms=500 |
| 200 | + ), |
| 201 | + ), |
| 202 | + ) |
| 203 | + |
| 204 | + cp = ConversationPersistor(model=agent, log="log.txt") |
| 205 | + cp.start() |
| 206 | + |
| 207 | + await ctx.connect(auto_subscribe=AutoSubscribe.AUDIO_ONLY) |
| 208 | + participant = await ctx.wait_for_participant() |
| 209 | + agent.start(ctx.room, participant) |
| 210 | + |
| 211 | + |
| 212 | +if __name__ == "__main__": |
| 213 | + cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint)) |
0 commit comments