forked from liwei109/Auto-FERNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_JAFFE.py
120 lines (95 loc) · 4.47 KB
/
test_JAFFE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import sys
import time
import glob
import torch
from tools import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
import torch.backends.cudnn as cudnn
import uuid
from torch.autograd import Variable
from NAS.model import NetworkCIFAR as Network
from dataloader.dataload_h5 import *
parser = argparse.ArgumentParser("JAFFE")
# parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.01794073, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float, default=100, help='report frequency')
parser.add_argument('--gpu', type=int, default=2, help='gpu device id')
parser.add_argument('--epochs', type=int, default=60, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=36, help='num of init channels')
parser.add_argument('--layers', type=int, default=20, help='total number of layers')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--auxiliary', action='store_true', default=True, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--arch', type=str, default='SGAS', help='which architecture to use')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--checkpoint', type=str, default='./best_test_weights_relabel.pt', help='which checkpoint to use')
args = parser.parse_args()
args.save = './JAFFE-log/eval-{}-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S"), str(uuid.uuid4()))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
CIFAR_CLASSES = 7
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
genotype = eval("genotypes.%s" % args.arch)
model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype)
model = model.cuda()
model.load_state_dict(torch.load(args.checkpoint))
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
test_queue = GetJAFFE(args)
model.drop_path_prob = args.drop_path_prob
best_test_acc = 0.
with torch.no_grad():
test_acc, test_obj = test(test_queue, model, criterion)
if test_acc > best_test_acc:
best_test_acc = test_acc
utils.save(model, os.path.join(args.save, 'best_test_weights.pt'))
logging.info('test_acc %f\tbest_test_acc %f', test_acc, best_test_acc)
def test(valid_queue, model, criterion):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = Variable(input).cuda()
target = Variable(target).cuda(async=True)
logits, _ = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % args.report_freq == 0:
logging.info('test %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
if __name__ == '__main__':
main()