forked from asavine/CompFinance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcMdlDupire.h
388 lines (326 loc) · 10.6 KB
/
mcMdlDupire.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
Written by Antoine Savine in 2018
This code is the strict IP of Antoine Savine
License to use and alter this code for personal and commercial applications
is freely granted to any person or company who purchased a copy of the book
Modern Computational Finance: AAD and Parallel Simulations
Antoine Savine
Wiley, 2018
As long as this comment is preserved at the top of the file
*/
// Dupire's model, chapter 6
#pragma once
#pragma warning(disable : 4018)
#include "matrix.h"
#include "interp.h"
#include "utility.h"
#define HALF_DAY 0.00136986301369863
template <class T>
class Dupire : public Model<T>
{
// Model parameters
// Today's spot
// That would be today's linear market in a production system
T mySpot;
// Local volatility structure
const vector<double> mySpots;
// We keep log spots to interpolate in log space
vector<double> myLogSpots;
const vector<Time> myTimes;
// Local vols
// Spot major: sigma(spot i, time j) = myVols[i][j]
matrix<T> myVols;
// Numerical parameters
// Maximum space between time steps
const Time myMaxDt;
// Similuation timeline
vector<Time> myTimeline;
// true (1) if the time step is an event date
// false (0) if it is an additional simulation step
vector<bool> myCommonSteps;
// The pruduct's defline byref
const vector<SampleDef>* myDefline;
// Pre-calculated on initialization
// volatilities pre-interpolated in time for each time step
// here time major: iv(time i, spot j) = myInterpVols[i][j]
matrix<T> myInterpVols;
// volatilities as stored are multiplied by sqrt(dt)
// so there is no need to do that during paths generation
// Exported parameters
vector<T*> myParameters;
vector<string> myParameterLabels;
public:
// Constructor: store data
template <class U>
Dupire(const U spot,
const vector<double> spots,
const vector<Time> times,
const matrix<U> vols,
const Time maxDt = 0.25)
: mySpot(spot),
mySpots(spots),
myLogSpots(mySpots.size()),
myTimes(times),
myVols(vols),
myMaxDt(maxDt),
myParameters(myVols.rows() * myVols.cols() + 1),
myParameterLabels(myVols.rows() * myVols.cols() + 1)
{
// Compute log spots
transform(mySpots.begin(), mySpots.end(), myLogSpots.begin(),
[](const double s) {return log(s); });
// Set parameter labels once
myParameterLabels[0] = "spot";
size_t p = 0;
for (size_t i = 0; i < myVols.rows(); ++i)
{
for (size_t j = 0; j < myVols.cols(); ++j)
{
ostringstream ost;
ost << setprecision(2) << fixed;
ost << "lvol " << mySpots[i] << " " << myTimes[j];
myParameterLabels[++p] = ost.str();
}
}
setParamPointers();
}
private:
// Must reset on copy
void setParamPointers()
{
myParameters[0] = &mySpot;
transform(myVols.begin(), myVols.end(), next(myParameters.begin()),
[](auto& vol) {return &vol; });
}
public:
// Read access to parameters
T spot() const
{
return mySpot;
}
const vector<double>& spots() const
{
return mySpots;
}
const vector<Time>& times() const
{
return myTimes;
}
const vector<T>& vols() const
{
return myVols;
}
// Access to all the model parameters
const vector<T*>& parameters() override
{
return myParameters;
}
const vector<string>& parameterLabels() const override
{
return myParameterLabels;
}
// Virtual copy constructor
unique_ptr<Model<T>> clone() const override
{
auto clone = make_unique<Dupire<T>>(*this);
clone->setParamPointers();
return clone;
}
// Initialize timeline
void allocate(
const vector<Time>& productTimeline,
const vector<SampleDef>& defline)
override
{
// Fill from product timeline
// Do the fill
myTimeline = fillData(
productTimeline, // Original (product) timeline
myMaxDt, // Maximum space allowed
HALF_DAY, // Minimum distance = half day
&systemTime, &systemTime + 1); // Hack to include system time
// Mark steps on timeline that are on the product timeline
myCommonSteps.resize(myTimeline.size());
transform(myTimeline.begin(), myTimeline.end(), myCommonSteps.begin(),
[&](const Time t)
{
return binary_search(productTimeline.begin(), productTimeline.end(), t);
});
// Take a reference on the product's defline
myDefline = &defline;
// Allocate the local volatilities
// pre-interpolated in time over simulation timeline
myInterpVols.resize(myTimeline.size() - 1, mySpots.size());
}
void init(
const vector<Time>& productTimeline,
const vector<SampleDef>& defline)
override
{
// Compute the local volatilities
// pre-interpolated in time and multiplied by sqrt(dt)
const size_t n = myTimeline.size() - 1;
for (size_t i = 0; i < n; ++i)
{
const double sqrtdt = sqrt(myTimeline[i + 1] - myTimeline[i]);
const size_t m = myLogSpots.size();
for (size_t j = 0; j < m; ++j)
{
myInterpVols[i][j] = sqrtdt * interp(
myTimes.begin(),
myTimes.end(),
myVols[j],
myVols[j] + myTimes.size(),
myTimeline[i]);
}
}
}
// MC Dimension
size_t simDim() const override
{
return myTimeline.size() - 1;
}
private:
// Helper function, fills a sample given the spot
inline static void fillScen(const T& spot, Sample<T>& scen)
{
fill(scen.forwards.front().begin(), scen.forwards.front().end(), spot);
}
public:
// Generate one path, consume Gaussian vector
// path must be pre-allocated
// with the same size as the product timeline
void generatePath(
const vector<double>& gaussVec,
Scenario<T>& path)
const override
{
// The starting spot
// We know that today is on the timeline
T logspot = log(mySpot);
Time current = systemTime;
// Next index to fill on the product timeline
size_t idx = 0;
// Is today on the product timeline?
if (myCommonSteps[idx])
{
fillScen(exp(logspot), path[idx]);
++idx;
}
// Iterate through timeline
const size_t n = myTimeline.size() - 1;
const size_t m = myLogSpots.size();
for (size_t i = 0; i < n; ++i)
{
// Interpolate volatility in spot
T vol = interp(
myLogSpots.begin(),
myLogSpots.end(),
myInterpVols[i],
myInterpVols[i] + m,
logspot);
// vol comes out * sqrt(dt)
// Apply Euler's scheme
logspot += vol * (- 0.5 * vol + gaussVec[i]);
// Store on the path?
if (myCommonSteps[i + 1])
{
fillScen(exp(logspot), path[idx]);
++idx;
}
}
}
};
// Calibration
#include "ivs.h"
// Calibrates one maturity
// Main calibration function below
template <class IT, class OT, class T = double>
inline void dupireCalibMaturity(
// IVS we calibrate to
const IVS& ivs,
// Maturity to calibrate
const Time maturity,
// Spots for local vol
IT spotsBegin,
IT spotsEnd,
// Results, by spot
// With (random access) iterator, STL style
OT lVolsBegin,
// Risk view
const RiskView<T>& riskView = RiskView<double>())
{
// Number of spots
IT spots = spotsBegin;
const size_t nSpots = distance(spotsBegin, spotsEnd);
// Estimate ATM so we cut the grid 2 stdevs away to avoid instabilities
const double atmCall = double(ivs.call(ivs.spot(), maturity));
// Standard deviation, approx. atm call * sqrt(2pi)
const double std = atmCall * 2.506628274631;
// Skip spots below and above 2.5 std
int il = 0;
while (il < nSpots && spots[il] < ivs.spot() - 2.5 * std) ++il;
int ih = nSpots - 1;
while (ih >= 0 && spots[ih] > ivs.spot() + 2.5 * std) --ih;
// Loop on spots
for (int i = il; i <= ih; ++i)
{
// Dupire's formula
lVolsBegin[i] = ivs.localVol(spots[i], maturity, &riskView);
}
// Extrapolate flat outside std
for (int i = 0; i < il; ++i)
lVolsBegin[i] = lVolsBegin[il];
for (int i = ih + 1; i < nSpots; ++i)
lVolsBegin[i] = lVolsBegin[ih];
}
#define ONE_HOUR 0.000114469
// Returns a struct with spots, times and lVols
template<class T = double>
inline auto dupireCalib(
// The IVS we calibrate to
const IVS& ivs,
// The local vol grid
// The spots to include
const vector<double>& inclSpots,
// Maximum space between spots
const double maxDs,
// The times to include, note NOT 0
const vector<Time>& inclTimes,
// Maximum space between times
const double maxDt,
// Risk view if required
// omitted: T = double , no risk view
const RiskView<T>& riskView = RiskView<double>())
{
// Results
struct
{
vector<double> spots;
vector<Time> times;
matrix<T> lVols;
} results;
// Spots and times
results.spots = fillData(inclSpots, maxDs, 0.01); // min space = 0.01
results.times = fillData(inclTimes, maxDt,
ONE_HOUR, // min space = 1 hour
&maxDt, &maxDt + 1 // dirty trick to include maxDt
);
// Allocate local vols, transposed maturity first
matrix<T> lVolsT(results.times.size(), results.spots.size());
// Maturity by maturity
const size_t n = results.times.size();
for (size_t j = 0; j < n; ++j)
{
dupireCalibMaturity(
ivs,
results.times[j],
results.spots.begin(),
results.spots.end(),
lVolsT[j],
riskView);
}
// transpose is defined in matrix.h
results.lVols = transpose(lVolsT);
return results;
}