-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathretrieval_shuffle.py
164 lines (128 loc) · 5.67 KB
/
retrieval_shuffle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Copyright 2024 LINE Corporation
LINE Corporation licenses this file to you under the Apache License,
version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at:
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""
import logging
import yaml
import hydra
from omegaconf import DictConfig
import random, os
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
from tqdm import tqdm
from datasets.datasets import TextMotionDataset
from models.models import ChronTMR
from models.metrics import all_contrastive_metrics, print_latex_metrics
from datasets.datasets import token_process
os.environ["TOKENIZERS_PARALLELISM"] = "true"
logger = logging.getLogger(__name__)
def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# TMR evaluation criterion
def save_metric(path, metrics):
strings = yaml.dump(metrics, indent=4, sort_keys=False)
with open(path, "w") as f:
f.write(strings)
def transpose(x):
return x.permute(*torch.arange(x.ndim - 1, -1, -1))
def get_sim_matrix(x, y):
x_logits = torch.nn.functional.normalize(x, dim=-1)
y_logits = torch.nn.functional.normalize(y, dim=-1)
sim_matrix = x_logits @ transpose(y_logits)
return sim_matrix
def compute_sim_matrix_events(cfg, model, dataset, keyids, device, tokenizer, batch_size=256):
with torch.no_grad():
# by batch (can be too costly on cuda device otherwise)
sim_matrices = []
for keyid in tqdm(keyids):
latent_texts = []
latent_motions = []
texts, motion, length, event, shuffled_events, _= dataset.load_keyid(keyid)
length = torch.Tensor([length]).to(device).int()#.unsqueeze(0)
motion= motion.to(device).unsqueeze(0)
texts_token, t_length = token_process(cfg.model.token_num,cfg.model.text_model_name, texts, tokenizer)
texts_token=texts_token.to(device)
t_length= torch.Tensor([t_length]).to(device).int()#.unsqueeze(0)
shuffled_text, e_length = token_process(cfg.model.token_num, cfg.model.text_model_name, shuffled_events, tokenizer)
e_length = torch.Tensor([e_length]).to(device).int()
shuffled_text = shuffled_text.to(device)
shuffled_text_emb = model.text_model(shuffled_text, e_length).float()
texts_emb = model.text_model(texts_token, t_length).float()
# Encode both motion and text
if event[0] > 1:
latent_text, _ = model.encode(texts_emb, t_length, "txt", sample_mean=cfg.text_encoder.vae, return_distribution=cfg.text_encoder.vae)
latent_motion, _ = model.encode(motion, length, "motion", sample_mean=cfg.motion_encoder.vae, return_distribution=cfg.motion_encoder.vae)
latent_event, _ = model.encode(shuffled_text_emb, e_length, "txt", sample_mean=cfg.text_encoder.vae, return_distribution=cfg.text_encoder.vae)
latent_texts.append(latent_text)
latent_motions.append(latent_motion)
latent_texts.append(latent_event)
latent_motions = torch.cat(latent_motions)
latent_texts = torch.cat(latent_texts)
sim_matrix = get_sim_matrix(latent_motions, latent_texts)
sim_matrices.append(sim_matrix)
sim_matrices = torch.cat(sim_matrices)
returned = {
"sim_matrix": sim_matrices.cpu().numpy()
}
return returned
@hydra.main(version_base=None, config_path="config", config_name="train_bert_orig")
def retrieval(cfg: DictConfig) -> None:
seed_everything(cfg.train.seed)
batch_size = cfg.dataloader.batch_size
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info("Load dataset")
test_dataset = TextMotionDataset(
cfg,
"test"
)
logger.info("Load model")
model = ChronTMR(cfg,vae=True)
model_path = os.path.join(cfg.model_save_dir, "best_model_mt.pt")
state_dict = torch.load(model_path)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
if cfg.model.text_model_name == 'ViT-B/32':
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
tokenizer = _Tokenizer()
else:
tokenizer = AutoTokenizer.from_pretrained(
cfg.model.text_model_name, TOKENIZERS_PARALLELISM=False
)
logger.info(
f"Selected Language Model: {cfg.model.text_model_name}"
)
result = compute_sim_matrix_events(
cfg, model, test_dataset, test_dataset.keyids, device, tokenizer, batch_size=batch_size
)
mats = result["sim_matrix"]
ret_res = np.sum(np.greater(mats[:, 0],mats[:, 1])) / mats.shape[0]
logger.info(
f"CAR: {str(ret_res)}"
)
metrics = {}
metrics["m2tshuf:R@1"] = float(ret_res)
metric_name = "shuffle_event.yaml"
path = os.path.join(cfg.save_dir, metric_name)
if not os.path.exists(cfg.save_dir):
os.makedirs(cfg.save_dir)
save_metric(path, metrics)
logger.info(f"Testing done, metrics saved in:\n{path}")
if __name__ == "__main__":
retrieval()