-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrainer.py
101 lines (90 loc) · 4.09 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import wandb
from loss_meter import LossMeter
from math import inf
class Trainer:
def __init__(self, config = None, model=None, gen_set=None):
self.gen_set = gen_set
self.config = config
self.model = model
self.val_count = 0
self.train_count = 0
self.step_count = 0
if config["wandb"]["wandb_on"]:
wandb.init(
entity=self.config["wandb"]["entity"],
project=self.config["wandb"]["project"],
notes=self.config["wandb"]["notes"],
tags=self.config["wandb"]["tags"],
name=self.config["wandb"]["name"],
config=self.config,
)
self.best_val_loss = inf
def train(self, epoch, data_loader):
total_loss_meter = LossMeter()
step_loss_meter = LossMeter()
pre_step = self.step_count
for batch_idx, batch_item in enumerate(data_loader):
loss = self.model.step(batch_idx, batch_item, "train")
torch.cuda.empty_cache()
total_loss_meter.aggr(loss.get_loss_dict_for_print("train"))
step_loss_meter.aggr(loss.get_loss_dict_for_print("step"))
print(loss.get_loss_dict_for_print("step"))
if ((batch_idx+1) % self.config["tr_set"]["scheduler"]["schedueler_step"] == 0) or (self.step_count == pre_step and batch_idx == len(data_loader)-1):
if self.config["wandb"]["wandb_on"]:
wandb.log(step_loss_meter.get_avg_results(), step=self.step_count)
wandb.log({"step_lr": self.model.scheduler.get_last_lr()[0]}, step = self.step_count)
self.step_count +=1
self.model.scheduler.step(self.step_count)
step_loss_meter.init()
if self.config["wandb"]["wandb_on"]:
wandb.log(total_loss_meter.get_avg_results(), step = self.step_count)
self.train_count += 1
self.model.save("train")
def test(self, epoch, data_loader, save_best_model):
total_loss_meter = LossMeter()
for batch_idx, batch_item in enumerate(data_loader):
loss = self.model.step(batch_idx, batch_item, "test")
total_loss_meter.aggr(loss.get_loss_dict_for_print("val"))
avg_total_loss = total_loss_meter.get_avg_results()
if self.config["wandb"]["wandb_on"]:
wandb.log(avg_total_loss, step = self.step_count)
self.val_count+=1
if save_best_model:
if self.best_val_loss > avg_total_loss["total_val"]:
self.best_val_loss = avg_total_loss["total_val"]
self.model.save("val")
def train_depr(self):
total_loss = 0
step_loss = 0
for batch_idx, batch_item in enumerate(self.train_loader):
loss = self.model.step(batch_idx, batch_item, "train")
total_loss += loss
step_loss += loss
if (batch_idx+1) % self.config["tr_set"]["schedueler_step"] == 0:
self.model.scheduler.step()
step_loss /= self.config["tr_set"]["schedueler_step"]
if self.config["wandb"]["wandb_on"]:
wandb.log({"step_train_loss":step_loss})
step_loss = 0
total_loss /= len(self.train_loader)
if self.config["wandb"]["wandb_on"]:
wandb.log({"train_loss": total_loss})
self.model.save("train")
def test_depr(self):
total_loss = 0
for batch_idx, batch_item in enumerate(self.val_loader):
loss = self.model.step(batch_idx, batch_item, "test")
total_loss += loss
total_loss /= len(self.val_loader)
if self.config["wandb"]["wandb_on"]:
wandb.log({"val_loss": total_loss})
if self.best_val_loss > total_loss:
self.best_val_loss = total_loss
self.model.save("val")
def run(self):
train_data_loader = self.gen_set[0][0]
val_data_loader = self.gen_set[0][1]
for epoch in range(100000):
self.train(epoch, train_data_loader)
self.test(epoch, val_data_loader, True)