-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest6.py
281 lines (250 loc) · 10.4 KB
/
test6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import ray
import ray.experimental.state.api as api
from prefect import flow
import logging
import os
import shutil
import time
import numpy as np
#from kafka import KafkaConsumer
import json
from typing import List
from joblib import dump, load
from sklearn.utils import check_random_state
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
import queue
import time
import paramiko
host_ip='10.105.48.154' #不需要带端口
username='root'
password='Nudt@123'
ray.init(address='ray://10.105.48.154:10001')
# Define the square task.
def get_from_remote(host_ip, remote_path, local_path, username, password):
t = paramiko.Transport((host_ip, 22))
t.connect(username=username, password=password) # 登录远程服务器
sftp = paramiko.SFTPClient.from_transport(t) # sftp传输协议
src = remote_path
des = local_path
sftp.get(src, des) #下载文件
# sftp.put(updatepath_file(),src) #上传文件
t.close()
def put_to_remote(host_ip, remote_path, local_path, username, password):
t = paramiko.Transport((host_ip, 22))
t.connect(username=username, password=password) # 登录远程服务器
sftp = paramiko.SFTPClient.from_transport(t) # sftp传输协议
src = remote_path
des = local_path
#sftp.get(src, des) #下载文件
sftp.put(des,src) #上传文件
t.close()
current_dir = '/root/prefect'
dataset_path = os.path.join(current_dir, 'dataset', 'mnist_{}.npz')
working_dir = os.path.join(current_dir, 'tmp')
trained_model_dir = os.path.join(working_dir, 'trained_models')
validated_model_dir = os.path.join(working_dir, 'validated_models')
deployed_model_dir = os.path.join(working_dir, 'deployed_models')
#model_deployed_event = queue.Queue()
other_event = queue.Queue()
def _prepare_working_dir():
for path in [trained_model_dir, validated_model_dir, deployed_model_dir]:
if not os.path.isdir(path):
os.makedirs(path)
def _get_latest_model(model_dir) -> str:
file_list = os.listdir(model_dir)
if file_list is None or len(file_list) == 0:
return None
else:
file_list.sort(reverse=True)
return os.path.join(model_dir, file_list[0])
def _preprocess_data_p(x_data, y_data):
random_state = check_random_state(0)
permutation = random_state.permutation(x_data.shape[0])
x_train = x_data[permutation]
y_train = y_data[permutation]
reshaped_x_train = x_train.reshape((x_train.shape[0], -1))
scaler_x_train = StandardScaler().fit_transform(reshaped_x_train)
return scaler_x_train, y_train
def _preprocess_data(dataset_uri):
with np.load(dataset_uri) as f:
x_data, y_data = f['x_train'], f['y_train']
return _preprocess_data_p(x_data, y_data)
# def preprocess1():
# _prepare_working_dir()
# train_dataset = dataset_path.format('train')
# try:
# event_sender = AIFlowNotificationClient(NOTIFICATION_SERVER_URI)
# my_topic = "test2"
# consumer = KafkaConsumer(my_topic, bootstrap_servers='10.105.48.156:9092', auto_offset_reset='smallest', group_id='test')
# count = 0
# x_train, y_train = [], []
# for msg in consumer: # 这里会监听,无限循环
# count += 1
# jsont = json.loads(str(msg.value,'utf-8'))
# x_train.append(jsont["xdata"] )
# y_train.append(jsont["ydata"] )
# if count % 1000 == 0:
# x_train1, y_train1 = _preprocess_data_p(np.array(x_train),np.array(y_train))
# np.save(os.path.join(working_dir, f'x_train'), x_train1) # 覆盖
# np.save(os.path.join(working_dir, f'y_train'), y_train1)
# event_sender.send_event(key="data_prepared", value=None)
# x_train, y_train = [], []
# #time.sleep(30)
# finally:
# event_sender.close()
@ray.remote
def preprocess(i):
_prepare_working_dir()
train_dataset = dataset_path.format('train')
# try:
# event_sender = AIFlowNotificationClient(NOTIFICATION_SERVER_URI)
#while True:
x_train, y_train = _preprocess_data(train_dataset)
np.save(os.path.join(working_dir, f'x_train'), x_train)
np.save(os.path.join(working_dir, f'y_train'), y_train)
print(ray.get_runtime_context().node_id)
# #event_sender.send_event(key="data_prepared", value=None)
# other_event.put("data_prepared")
# print("data prepared!!")
# time.sleep(30)
#finally:
#event_sender.close()
x_train_id = ray.put(x_train)
y_train_id = ray.put(y_train)
print(x_train_id,y_train_id)
return x_train_id,y_train_id
@ray.remote
def train(x_train_id,y_train_id):
"""
See also:
https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html
"""
_prepare_working_dir()
clf = LogisticRegression(C=50. / 5000, penalty='l1', solver='saga', tol=0.1)
#x_train_file = os.path.join(working_dir, f'x_train.npy')
#y_train_file = os.path.join(working_dir, f'y_train.npy')
#get_from_remote(host_ip, x_train_file, x_train_file, username, password)
#get_from_remote(host_ip, y_train_file, y_train_file, username, password)
clf.fit(x_train_id, y_train_id)
model_path = os.path.join(trained_model_dir, time.strftime("%Y%m%d%H%M%S", time.localtime()))
dump(clf, model_path)
put_to_remote(host_ip, model_path, model_path, username, password)
print(ray.get_runtime_context().node_id)
@ray.remote
def validate(i):
_prepare_working_dir()
validate_dataset = dataset_path.format('evaluate')
x_validate, y_validate = _preprocess_data(validate_dataset)
to_be_validated = _get_latest_model(trained_model_dir)
clf = load(to_be_validated)
scores = cross_val_score(clf, x_validate, y_validate, scoring='precision_macro')
print(ray.get_runtime_context().node_id)
try:
#event_sender = AIFlowNotificationClient(NOTIFICATION_SERVER_URI)
deployed_model = _get_latest_model(deployed_model_dir)
if deployed_model is None:
logging.info(f"Generate the 1st model with score: {scores}")
shutil.copy(to_be_validated, validated_model_dir)
#event_sender.send_event(key="model_validated", value=None)
#other_event.put("model_validated")
else:
deployed_clf = load(deployed_model)
old_scores = cross_val_score(deployed_clf, x_validate, y_validate, scoring='precision_macro')
if np.mean(scores) > np.mean(old_scores):
logging.info(f"A new model with score: {scores} passes validation")
shutil.copy(to_be_validated, validated_model_dir)
#event_sender.send_event(key="model_validated", value=None)
#other_event.put("model_validated")
else:
logging.info(f"New generated model with score: {scores} is worse "
f"than the previous: {old_scores}, ignored.")
finally:
pass
#event_sender.close()
@ray.remote
def deploy(i):
_prepare_working_dir()
to_be_deployed = _get_latest_model(validated_model_dir)
print(ray.get_runtime_context().node_id)
return to_be_deployed
#deploy_model_path = shutil.copy(to_be_deployed, deployed_model_dir)
#model_deployed_event.put(to_be_deployed)
# try:
# event_sender = AIFlowNotificationClient(NOTIFICATION_SERVER_URI)
# event_sender.send_event(key="model_deployed", value=deploy_model_path)
# finally:
# event_sender.close()
@ray.remote
def predict(model):
_prepare_working_dir()
predict_dataset = dataset_path.format('predict')
result_path = os.path.join(working_dir, 'predict_result')
x_predict, _ = _preprocess_data(predict_dataset)
#model_loader = ModelLoader()
#while True:
#model = model_deployed_event.get()
current_model = model#model_loader.current_model
clf = load(current_model)
result = clf.predict(x_predict)
print(ray.get_runtime_context().node_id)
with open(result_path, 'a') as f:
f.write(f'model [{current_model}] predict result: {result}\n')
return "kk"
#model_deployed_event.task_done()
# try:
# event_listener = AIFlowNotificationClient(NOTIFICATION_SERVER_URI)
# event_listener.register_listener(listener_processor=model_loader,
# event_keys=["model_deployed", ])
# while True:
# if current_model != model_loader.current_model:
# current_model = model_loader.current_model
# logging.info(f"Predicting with new model: {current_model}")
# clf = load(current_model)
# result = clf.predict(x_predict)
# with open(result_path, 'a') as f:
# f.write(f'model [{current_model}] predict result: {result}\n')
# time.sleep(5)
# finally:
# event_listener.close()
t = time.time()
x,y= ray.get(preprocess.options(
scheduling_strategy=ray.util.scheduling_strategies.NodeAffinitySchedulingStrategy(
node_id = 'fba93a36ef64d032d1d8fb0aa7129b44111a6874e7753e2e03c33d6b',
soft=False,
)
).remote(0))
k1 = ray.get(train.options(
scheduling_strategy=ray.util.scheduling_strategies.NodeAffinitySchedulingStrategy(
node_id = 'bc214d4bfa4e90f0449b831c61894c1087ba50b8cd6308d84a453c32',
soft=False,
)
).remote(x,y))# 返回的值当参数传递的时候,自动读取这个值指向的数据
k2 = ray.get(validate.options(
scheduling_strategy=ray.util.scheduling_strategies.NodeAffinitySchedulingStrategy(
node_id = 'fba93a36ef64d032d1d8fb0aa7129b44111a6874e7753e2e03c33d6b',
soft=False,
)
).remote(k1))
k4 = ray.get(deploy.options(
scheduling_strategy=ray.util.scheduling_strategies.NodeAffinitySchedulingStrategy(
node_id = 'fba93a36ef64d032d1d8fb0aa7129b44111a6874e7753e2e03c33d6b',
soft=False,
)
).remote(k2))
k5 = ray.get(predict.options(
scheduling_strategy=ray.util.scheduling_strategies.NodeAffinitySchedulingStrategy(
node_id = 'fba93a36ef64d032d1d8fb0aa7129b44111a6874e7753e2e03c33d6b',
soft=False,
)
).remote(k4))
print(f'Total coast:{time.time() - t:.4f}s')
# # <follow the previous code>
# from ray import workflow
# # Execute the workflow and print the result.
# print(workflow.run(k5))
# # You can also run the workflow asynchronously and fetch the output via
# # 'ray.get'
# output_ref = workflow.run_async(k5)
# print(ray.get(output_ref))