diff --git a/lightly_studio/Makefile b/lightly_studio/Makefile index f0b411fcc..96bbc712b 100644 --- a/lightly_studio/Makefile +++ b/lightly_studio/Makefile @@ -40,6 +40,11 @@ start-e2e: build @echo "Starting server for e2e tests..." uv run e2e-tests/index_dataset_for_end2end_ui_tests.py +.PHONY: start-coco-10k +start-coco-10k: build + @echo "Starting server for e2e tests with COCO 10k dataset..." + uv run e2e-tests/index_coco_10k.py + .PHONY: start-e2e-with-captions start-e2e-with-captions: build @echo "Starting server for e2e tests with captions..." diff --git a/lightly_studio/e2e-tests/index_coco_10k.py b/lightly_studio/e2e-tests/index_coco_10k.py new file mode 100644 index 000000000..3cd5c8202 --- /dev/null +++ b/lightly_studio/e2e-tests/index_coco_10k.py @@ -0,0 +1,25 @@ +"""End-to-end demonstration of the lightly_studio dataset loading and UI. + +This module provides a simple example of how to load a COCO instance +segmentation dataset and launch the UI application for exploration and +visualization. +""" + +from lightly_studio import AnnotationType, Dataset, db_manager, start_gui + +# Clean up an existing database +db_manager.connect(cleanup_existing=True) + +# Create a Dataset instance +dataset = Dataset.create() + +# We point to the annotations json file and the input images folder. +# Defined dataset is processed here to be available for the UI application. +dataset.add_samples_from_coco( + annotations_json="datasets/coco-10k/annotations/instances_train2017.json", + images_path="datasets/coco-10k/images", + annotation_type=AnnotationType.INSTANCE_SEGMENTATION, +) + +# We start the UI application on port 8001 +start_gui()