-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
129 lines (113 loc) · 5.08 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
""" Test TOS-Net. """
import os
import numpy as np
from datetime import datetime
import sys
import argparse
from tqdm import tqdm
import imageio
from collections import OrderedDict
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.nn.functional import interpolate, sigmoid
import torch.backends.cudnn as cudnn
import dataloaders.thinobject5k as thinobject5k
import dataloaders.coift as coift
import dataloaders.hrsod as hrsod
from dataloaders import custom_transforms as tr
import dataloaders.helpers as helpers
import networks.tosnet as tosnet
def parse_args():
parser = argparse.ArgumentParser(description='Test TOS-Net')
parser.add_argument('--test_set', type=str, default='coift')
parser.add_argument('--result_dir', type=str, default=None)
parser.add_argument('--cfg', type=str, default='weights/tosnet_ours/config.txt')
parser.add_argument('--weights', type=str, default='weights/tosnet_ours/models/TOSNet_epoch-49.pth')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = helpers.read_cfg(args.cfg)
for key in cfg.keys():
print('[{}]: {}'.format(key, cfg[key]))
device = torch.device('cuda')
# cudnn.enabled = True
# cudnn.benchmark = True
# cudnn.deterministic = True
# Setup network
tosnet.lr_size = cfg['lr_size']
net = tosnet.tosnet_resnet50(
n_inputs=cfg['num_inputs'],
n_classes=cfg['num_classes'],
os=16, pretrained=None)
print('Loading from snapshot: {}'.format(args.weights))
net.load_state_dict(torch.load(args.weights, map_location=lambda storage, loc:storage))
net.to(device)
net.eval()
# Setup data transformations
composed_transforms = [
tr.IdentityTransform(tr_elems=['gt'], prefix='ori_'),
tr.CropFromMask(crop_elems=['image', 'gt'], relax=cfg['relax_crop'],
zero_pad=cfg['zero_pad_crop'],
adaptive_relax=cfg['adaptive_relax'], prefix=''),
tr.Resize(resize_elems=['image', 'gt', 'void_pixels'],
min_size=cfg['min_size'], max_size=cfg['max_size']),
tr.ComputeImageGradient(elem='image'),
tr.ExtremePoints(sigma=10, pert=0, elem='gt'),
tr.GaussianTransform(tr_elems=['extreme_points'],
mask_elem='gt', sigma=10, tr_name='points'),
tr.FixedResizePoints(resolutions={
'extreme_points': (cfg['lr_size'], cfg['lr_size'])},
mask_elem='gt', prefix='lr_'),
tr.FixedResize(resolutions={
'image' : (cfg['lr_size'], cfg['lr_size']),
'gt' : (cfg['lr_size'], cfg['lr_size']),
'void_pixels': (cfg['lr_size'], cfg['lr_size'])},
prefix='lr_'),
tr.GaussianTransform(tr_elems=['lr_extreme_points'],
mask_elem='lr_gt', sigma=10, tr_name='lr_points'),
tr.ToImage(norm_elem=['points', 'image_grad', 'lr_points']),
tr.ConcatInputs(cat_elems=['lr_image', 'lr_points'], cat_name='concat_lr'),
tr.ConcatInputs(cat_elems=['image', 'points'], cat_name='concat'),
tr.ConcatInputs(cat_elems=['image', 'image_grad'], cat_name='grad'),
tr.ToTensor()]
composed_transforms_ts = transforms.Compose(composed_transforms)
# Setup dataset
if args.test_set == 'thinobject5k_test':
db = thinobject5k.ThinObject5K(split='test', transform=composed_transforms_ts)
elif args.test_set == 'coift':
db = coift.COIFT(split='test', transform=composed_transforms_ts)
elif args.test_set == 'hrsod':
db = hrsod.HRSOD(split='test', transform=composed_transforms_ts)
else:
raise NotImplementedError
testloader = DataLoader(db, batch_size=1, shuffle=False, num_workers=4)
# Create result directories
if args.result_dir is None:
save_dir = os.path.join('results', args.test_set)
else:
save_dir = args.result_dir
os.makedirs(save_dir, exist_ok=True)
print('Testing network')
with torch.no_grad():
for ii, sample in enumerate(tqdm(testloader)):
# Read (image, gt) pairs
inputs = sample['concat'].to(device)
inputs_lr = sample['concat_lr'].to(device)
grads = sample['grad'].to(device)
metas = sample['meta']
# Forward pass
outs = net.forward(inputs, grads, inputs_lr, roi=None)[1]
assert outs.size()[2:] == inputs.size()[2:]
output = torch.sigmoid(outs).cpu().numpy().squeeze()
# Project back to original image space
relax = sample['meta']['relax'][0].item()
gt = sample['ori_gt'].numpy().squeeze()
bbox = helpers.get_bbox(gt, pad=relax, zero_pad=True)
result = helpers.crop2fullmask(output, bbox, gt, zero_pad=True, relax=relax)
result = np.uint8(result * 255)
# Save results
imageio.imwrite(os.path.join(save_dir, metas['image'][0] + \
'-' + metas['object'][0] + '.png'), result)
print('Done testing for dataset: {}'.format(args.test_set))