-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
210 lines (164 loc) · 6.76 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import sys
from PyQt5 import QtWidgets
from matplotlib.backends.backend_qt5agg import FigureCanvas
from matplotlib.figure import Figure
from tensorflow.keras.models import load_model
from numpy.random import randn
from matplotlib import pyplot
from PIL import ImageGrab
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import (
QApplication,
QHBoxLayout,
QLabel,
QMainWindow,
QPushButton,
QStackedLayout,
QVBoxLayout,
QWidget,
)
from numpy import asarray
from numpy.random import randint
from numpy import linspace
from PIL import Image
import PIL
from matplotlib.pyplot import imsave
from matplotlib.pyplot import cm
import io
import imageio
import os
import shutil
class MainWindow(QtWidgets.QMainWindow):
def __init__(self, parent=None):
super().__init__(parent)
# generate points in latent space as input for the generator
def generate_latent_points(latent_dim, n_samples):
# generate points in the latent space
x_input = randn(latent_dim * n_samples)
# reshape into a batch of inputs for the network
x_input = x_input.reshape(n_samples, latent_dim)
return x_input
# load model
model = load_model("generator.h5")
self.figure = Figure(figsize=(5, 3))
self.canvas = FigureCanvas(self.figure)
def create_plot():
self.canvas.draw_idle()
# generate images
latent_points = generate_latent_points(100, 100)
# generate images
X = model.predict(latent_points)
# scale from [-1,1] to [0,1]
X = (X + 1) / 2.0
for i in range(1 * 1):
self.ax = self.figure.subplots(1, 1 + i)
self.ax.set_axis_off()
self.ax.imshow(X[i, :], cmap="gray")
# save method
def save():
# selecting file path
filePath, _ = QFileDialog.getSaveFileName(self, "Save Image", "",
"PNG(*.png);;JPEG(*.jpg *.jpeg);;All Files(*.*) ")
# if file path is blank return back
if filePath == "":
return
screen = QtWidgets.QApplication.primaryScreen()
screenshot = screen.grabWindow( w.winId() )
screenshot.save(filePath)
# gif method
def make_gif():
# generate points in latent space as input for the generator
def generate_latent_points(latent_dim, n_samples, n_classes=10):
# generate points in the latent space
x_input = randn(latent_dim * n_samples)
# reshape into a batch of inputs for the network
z_input = x_input.reshape(n_samples, latent_dim)
return z_input
# uniform interpolation between two points in latent space
def interpolate_points(p1, p2, n_steps):
# interpolate ratios between the points
ratios = linspace(0, 1, num=n_steps)
# linear interpolate vectors
vectors = list()
for ratio in ratios:
v = (1.0 - ratio) * p1 + ratio * p2
vectors.append(v)
return asarray(vectors)
# create a plot of generated images
size = 128
def plot_generated(examples, n):
# plot images
for i in range(n):
# define subplot
pyplot.subplot(1, n, 1 + i)
# turn off axis
pyplot.axis('off')
# plot raw pixel data
img= np.zeros((size,size))
for j in range(size):
for k in range(size):
img[j,k] = examples[i,j,k,0]
pyplot.imshow(img, 'gray')
imsave("images_gif/image_%d.png" % i, img)
Image.open("images_gif/image_%d.png" % i).convert('L').save("images_gif/imageg_%d.png" % i)
os.remove("images_gif/image_%d.png" % i)
def save_gif():
# selecting file path
filePath, _ = QFileDialog.getSaveFileName(self, "Save GIF", "",
"GIF(*.gif);;All Files(*.*) ")
# if file path is blank return back
if filePath == "":
return
with imageio.get_writer(filePath, mode='I') as writer:
for i in range (100):
image = imageio.imread('images_gif/imageg_'+ str(i) + '.png')
writer.append_data(image)
if os.path.exists("images_gif"):
shutil.rmtree('images_gif', ignore_errors=True)
else:
os.mkdir("images_gif")
# load model
model = load_model('generator.h5')
# generate points in latent space
pts = generate_latent_points(100, 100)
print(pts.shape)
# interpolate points in latent space
interpolated = interpolate_points(pts[0], pts[99],100)
# generate images
X = model.predict(interpolated)
# scale from [-1,1] to [0,1]
X = (X + 1) / 2.0
# plot the result
plot_generated(X, len(interpolated))
save_gif()
shutil.rmtree('images_gif', ignore_errors=True)
self.setWindowTitle("Deep Drawing Generation")
pagelayout = QVBoxLayout()
button_layout = QHBoxLayout()
self.stacklayout = QStackedLayout()
pagelayout.addLayout(button_layout)
pagelayout.addLayout(self.stacklayout)
generate_btn = QPushButton("Generate image")
generate_btn.clicked.connect(create_plot)
button_layout.addWidget(generate_btn)
save_btn = QPushButton("Save image")
save_btn.clicked.connect(save)
button_layout.addWidget(save_btn)
make_gif_btn = QPushButton("Make GIF")
make_gif_btn.clicked.connect(make_gif)
button_layout.addWidget(make_gif_btn)
self.stacklayout.addWidget(self.canvas)
widget = QWidget()
widget.setLayout(pagelayout)
self.setCentralWidget(widget)
if __name__ == "__main__":
import sys
app = QtWidgets.QApplication(sys.argv)
w = MainWindow()
w.resize(640, 480)
w.show()
sys.exit(app.exec_())