forked from neo4j/neo4j-graphrag-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_llm.py
183 lines (157 loc) · 6.12 KB
/
openai_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import abc
from typing import TYPE_CHECKING, Any, Iterable, Optional
from ..exceptions import LLMGenerationError
from .base import LLMInterface
from .types import LLMResponse
if TYPE_CHECKING:
import openai
from openai.types.chat.chat_completion_message_param import (
ChatCompletionMessageParam,
)
class BaseOpenAILLM(LLMInterface, abc.ABC):
client: openai.OpenAI
async_client: openai.AsyncOpenAI
def __init__(
self,
model_name: str,
model_params: Optional[dict[str, Any]] = None,
system_instruction: Optional[str] = None,
):
"""
Base class for OpenAI LLM.
Makes sure the openai Python client is installed during init.
Args:
model_name (str):
model_params (str): Parameters like temperature that will be passed to the model when text is sent to it
"""
try:
import openai
except ImportError:
raise ImportError(
"Could not import openai Python client. "
"Please install it with `pip install openai`."
)
self.openai = openai
super().__init__(model_name, model_params, system_instruction)
def get_messages(
self,
input: str,
) -> Iterable[ChatCompletionMessageParam]:
return [
{"role": "system", "content": input},
]
def get_conversation_history(
self,
input: str,
chat_history: list[str],
) -> Iterable[ChatCompletionMessageParam]:
messages = [{"role": "system", "content": self.system_instruction}]
for i, message in enumerate(chat_history):
if i % 2 == 0:
messages.append({"role": "user", "content": message})
else:
messages.append({"role": "assistant", "content": message})
messages.append({"role": "user", "content": input})
return messages
def chat(self, input: str, chat_history: list[str]) -> LLMResponse:
try:
response = self.client.chat.completions.create(
messages=self.get_conversation_history(input, chat_history),
model=self.model_name,
**self.model_params,
)
content = response.choices[0].message.content or ""
return LLMResponse(content=content)
except self.openai.OpenAIError as e:
raise LLMGenerationError(e)
def invoke(self, input: str) -> LLMResponse:
"""Sends a text input to the OpenAI chat completion model
and returns the response's content.
Args:
input (str): Text sent to the LLM
Returns:
LLMResponse: The response from OpenAI.
Raises:
LLMGenerationError: If anything goes wrong.
"""
try:
response = self.client.chat.completions.create(
messages=self.get_messages(input),
model=self.model_name,
**self.model_params,
)
content = response.choices[0].message.content or ""
return LLMResponse(content=content)
except self.openai.OpenAIError as e:
raise LLMGenerationError(e)
async def ainvoke(self, input: str) -> LLMResponse:
"""Asynchronously sends a text input to the OpenAI chat
completion model and returns the response's content.
Args:
input (str): Text sent to the LLM
Returns:
LLMResponse: The response from OpenAI.
Raises:
LLMGenerationError: If anything goes wrong.
"""
try:
response = await self.async_client.chat.completions.create(
messages=self.get_messages(input),
model=self.model_name,
**self.model_params,
)
content = response.choices[0].message.content or ""
return LLMResponse(content=content)
except self.openai.OpenAIError as e:
raise LLMGenerationError(e)
class OpenAILLM(BaseOpenAILLM):
def __init__(
self,
model_name: str,
model_params: Optional[dict[str, Any]] = None,
system_instruction: Optional[str] = None,
**kwargs: Any,
):
"""OpenAI LLM
Wrapper for the openai Python client LLM.
Args:
model_name (str):
model_params (str): Parameters like temperature that will be passed to the model when text is sent to it
kwargs: All other parameters will be passed to the openai.OpenAI init.
"""
super().__init__(model_name, model_params, system_instruction)
self.client = self.openai.OpenAI(**kwargs)
self.async_client = self.openai.AsyncOpenAI(**kwargs)
class AzureOpenAILLM(BaseOpenAILLM):
def __init__(
self,
model_name: str,
model_params: Optional[dict[str, Any]] = None,
system_instruction: Optional[str] = None,
**kwargs: Any,
):
"""Azure OpenAI LLM. Use this class when using an OpenAI model
hosted on Microsoft Azure.
Args:
model_name (str):
model_params (str): Parameters like temperature that will be passed to the model when text is sent to it
kwargs: All other parameters will be passed to the openai.OpenAI init.
"""
super().__init__(model_name, model_params, system_instruction)
self.client = self.openai.AzureOpenAI(**kwargs)
self.async_client = self.openai.AsyncAzureOpenAI(**kwargs)