forked from neo4j/neo4j-graphrag-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
84 lines (66 loc) · 2.64 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, Optional
from .types import LLMResponse
class LLMInterface(ABC):
"""Interface for large language models.
Args:
model_name (str): The name of the language model.
model_params (Optional[dict], optional): Additional parameters passed to the model when text is sent to it. Defaults to None.
**kwargs (Any): Arguments passed to the model when for the class is initialised. Defaults to None.
"""
def __init__(
self,
model_name: str,
model_params: Optional[dict[str, Any]] = None,
system_instruction: Optional[str] = None,
**kwargs: Any,
):
self.model_name = model_name
self.model_params = model_params or {}
self.system_instruction = system_instruction
@abstractmethod
def invoke(self, input: str) -> LLMResponse:
"""Sends a text input to the LLM and retrieves a response.
Args:
input (str): Text sent to the LLM
Returns:
LLMResponse: The response from the LLM.
Raises:
LLMGenerationError: If anything goes wrong.
"""
@abstractmethod
def chat(self, input: str, chat_history: list[str]) -> LLMResponse:
"""Sends a text input and a converstion history to the LLM and retrieves a response.
Args:
input (str): Text sent to the LLM
chat_history (list[str]]): A list of previous messages in the conversation
Returns:
LLMResponse: The response from the LLM.
Raises:
LLMGenerationError: If anything goes wrong.
"""
@abstractmethod
async def ainvoke(self, input: str) -> LLMResponse:
"""Asynchronously sends a text input to the LLM and retrieves a response.
Args:
input (str): Text sent to the LLM
Returns:
LLMResponse: The response from the LLM.
Raises:
LLMGenerationError: If anything goes wrong.
"""