From 6756cb548a507bcc92fcae55efed63638831c59e Mon Sep 17 00:00:00 2001 From: Sabri Eyuboglu Date: Fri, 22 Jul 2022 22:02:25 +0000 Subject: [PATCH] Add colab --- examples/01_hapi_intro.ipynb | 1205 ++++++ examples/dev-2.ipynb | 7142 ---------------------------------- examples/dev.ipynb | 3047 --------------- 3 files changed, 1205 insertions(+), 10189 deletions(-) create mode 100644 examples/01_hapi_intro.ipynb delete mode 100644 examples/dev-2.ipynb delete mode 100644 examples/dev.ipynb diff --git a/examples/01_hapi_intro.ipynb b/examples/01_hapi_intro.ipynb new file mode 100644 index 0000000..d9225e8 --- /dev/null +++ b/examples/01_hapi_intro.ipynb @@ -0,0 +1,1205 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "try-HAPI.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "40e82a15b15f4de5afdb78193332d6d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a0963e575f104ad280db8f98704aaaa7", + "IPY_MODEL_9fa0f34d1a7c4f5e8a6f0e438b32bec0", + "IPY_MODEL_3b66832981354857925b58f87e509734" + ], + "layout": "IPY_MODEL_ff2536158a1048ecaba0a6a0d14ba47a" + } + }, + "a0963e575f104ad280db8f98704aaaa7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e359003626b345068482112b93d09212", + "placeholder": "​", + "style": "IPY_MODEL_de72432d9c114c8d86e92eb3b771f305", + "value": "100%" + } + }, + "9fa0f34d1a7c4f5e8a6f0e438b32bec0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0f153a65f6348bd846a9d27b1314db6", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d402dca42ab4e138bd6354c687443f3", + "value": 4 + } + }, + "3b66832981354857925b58f87e509734": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_173824c85c264b90837f16ec27fa0889", + "placeholder": "​", + "style": "IPY_MODEL_8d25f5cb44a24c759ada87eb3f3ae1b8", + "value": " 4/4 [00:02<00:00, 1.52it/s]" + } + }, + "ff2536158a1048ecaba0a6a0d14ba47a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e359003626b345068482112b93d09212": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "de72432d9c114c8d86e92eb3b771f305": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e0f153a65f6348bd846a9d27b1314db6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d402dca42ab4e138bd6354c687443f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "173824c85c264b90837f16ec27fa0889": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d25f5cb44a24c759ada87eb3f3ae1b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3bbee1863bc4f169e4c509d0c20eb56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1762b9b0efd84effb037585d65b56396", + "IPY_MODEL_9317f9d225324c41a069bedc3c19afd8", + "IPY_MODEL_758b16ef3e6a4963b278205ff7ad940a" + ], + "layout": "IPY_MODEL_afa7f4cb07534a389a9566954fd85b06" + } + }, + "1762b9b0efd84effb037585d65b56396": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a797eb02975d46af85212bd56b869983", + "placeholder": "​", + "style": "IPY_MODEL_3900af1d46724aa48414c6989246a65f", + "value": "100%" + } + }, + "9317f9d225324c41a069bedc3c19afd8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b3c658455a94bb0a713da5ee54eeb80", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ebe6f3d7f6a34feb8b4763d5a36de8b2", + "value": 1 + } + }, + "758b16ef3e6a4963b278205ff7ad940a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5259a4379a97456b8f26c15b6207fd79", + "placeholder": "​", + "style": "IPY_MODEL_98bd390eb7df48af9ce7b3b5818ac797", + "value": " 1/1 [00:00<00:00, 2.39it/s]" + } + }, + "afa7f4cb07534a389a9566954fd85b06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a797eb02975d46af85212bd56b869983": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3900af1d46724aa48414c6989246a65f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b3c658455a94bb0a713da5ee54eeb80": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebe6f3d7f6a34feb8b4763d5a36de8b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5259a4379a97456b8f26c15b6207fd79": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98bd390eb7df48af9ce7b3b5818ac797": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "![banner.png]()\n", + "\n", + "History of APIs (HAPI) is a large-scale, longitudinal database of commercial ML API predictions. It contains 1.7 million predictions collected from 2020 to 2022 and spanning APIs from Amazon, Google, IBM, and Microsoft. The database include diverse machine learning tasks including image tagging, speech recognition and text mining.\n", + "\n", + "This notebook will demonstrate how to get started with the database. " + ], + "metadata": { + "id": "pafhshHp5Eoq" + } + }, + { + "cell_type": "markdown", + "source": [ + "We provide a lightweight Python package for getting started with HAPI. Let's install it with pip: " + ], + "metadata": { + "id": "2lCXGKl44rrH" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "V_BsBipBb9lD" + }, + "outputs": [], + "source": [ + "!pip install \"hapi@git+https://github.com/lchen001/hapi@main\"" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Import the library and download the data, optionally specifying the directory for the the download. \n", + "\n", + "If the directory is not specified, the data will be downloaded to `~/.hapi`.\n", + "\n", + "> You can permanently set the data directory by adding the variable `HAPI_DATA_DIR` to your environment. " + ], + "metadata": { + "id": "zSTSHm-C5ySy" + } + }, + { + "cell_type": "code", + "source": [ + "import hapi\n", + "hapi.config.data_dir = \".\" \n", + "hapi.download();" + ], + "metadata": { + "id": "TLepmJA3cFp_" + }, + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Once we've downloaded the database, we can list the available APIs, datasets, and tasks with `hapi.summary()`. This returns a [Pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) with columns `task, dataset, api, date, path, cost_per_10k`. " + ], + "metadata": { + "id": "nVmIrTD-59hp" + } + }, + { + "cell_type": "code", + "source": [ + "hapi.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 655 + }, + "id": "wW17vea2cs-F", + "outputId": "1fc99b1e-84b3-4f38-f140-a2820f0704dd" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " task dataset api date \\\n", + "0 scr command google_scr 20-03-29 \n", + "1 scr command ibm_scr 20-03-29 \n", + "2 scr command deepspeech_lib_scr 20-03-29 \n", + "3 scr command microsoft_scr 20-03-29 \n", + "4 scr command ibm_scr 22-05-23 \n", + ".. ... ... ... ... \n", + "171 fer ferplus facepp_fer 22-05-23 \n", + "172 fer ferplus google_fer 22-05-23 \n", + "173 sa imdb baidu_sa 21-02-21 \n", + "174 sa imdb amazon_sa 21-02-21 \n", + "175 sa imdb google_sa 21-02-21 \n", + "\n", + " path cost_per_10k \n", + "0 scr/command/google_scr/20-03-29.json 60.00 \n", + "1 scr/command/ibm_scr/20-03-29.json 25.00 \n", + "2 scr/command/deepspeech_lib_scr/20-03-29.json 0.02 \n", + "3 scr/command/microsoft_scr/20-03-29.json 41.00 \n", + "4 scr/command/ibm_scr/22-05-23.json 25.00 \n", + ".. ... ... \n", + "171 fer/ferplus/facepp_fer/22-05-23.json 5.00 \n", + "172 fer/ferplus/google_fer/22-05-23.json 15.00 \n", + "173 sa/imdb/baidu_sa/21-02-21.json 3.50 \n", + "174 sa/imdb/amazon_sa/21-02-21.json 0.75 \n", + "175 sa/imdb/google_sa/21-02-21.json 2.50 \n", + "\n", + "[176 rows x 6 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
taskdatasetapidatepathcost_per_10k
0scrcommandgoogle_scr20-03-29scr/command/google_scr/20-03-29.json60.00
1scrcommandibm_scr20-03-29scr/command/ibm_scr/20-03-29.json25.00
2scrcommanddeepspeech_lib_scr20-03-29scr/command/deepspeech_lib_scr/20-03-29.json0.02
3scrcommandmicrosoft_scr20-03-29scr/command/microsoft_scr/20-03-29.json41.00
4scrcommandibm_scr22-05-23scr/command/ibm_scr/22-05-23.json25.00
.....................
171ferferplusfacepp_fer22-05-23fer/ferplus/facepp_fer/22-05-23.json5.00
172ferferplusgoogle_fer22-05-23fer/ferplus/google_fer/22-05-23.json15.00
173saimdbbaidu_sa21-02-21sa/imdb/baidu_sa/21-02-21.json3.50
174saimdbamazon_sa21-02-21sa/imdb/amazon_sa/21-02-21.json0.75
175saimdbgoogle_sa21-02-21sa/imdb/google_sa/21-02-21.json2.50
\n", + "

176 rows × 6 columns

\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "To load the predictions into memory we use `hapi.get_predictions()`. The keyword arguments allow us to load predictions for a subset of tasks, datasets, apis and/or dates. \n", + "\n", + "The predictions are returned as a dictionary mapping from `\"{task}/{dataset}/{api}/{date}\"` to lists of dictionaries, each with keys `\"example_id\"`, `\"predicted_label\"`, and `\"confidence\"`." + ], + "metadata": { + "id": "OTsuXC5n6Tyf" + } + }, + { + "cell_type": "code", + "source": [ + "predictions = hapi.get_predictions(task=\"mic\", dataset=\"coco\", api=[\"google_mic\", \"microsoft_mic\"])\n", + "\n", + "predictions[\"mic/coco/microsoft_mic/20-11-20\"][:3]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 210, + "referenced_widgets": [ + "40e82a15b15f4de5afdb78193332d6d6", + "a0963e575f104ad280db8f98704aaaa7", + "9fa0f34d1a7c4f5e8a6f0e438b32bec0", + "3b66832981354857925b58f87e509734", + "ff2536158a1048ecaba0a6a0d14ba47a", + "e359003626b345068482112b93d09212", + "de72432d9c114c8d86e92eb3b771f305", + "e0f153a65f6348bd846a9d27b1314db6", + "9d402dca42ab4e138bd6354c687443f3", + "173824c85c264b90837f16ec27fa0889", + "8d25f5cb44a24c759ada87eb3f3ae1b8" + ] + }, + "id": "Ip2kbMGucwkU", + "outputId": "4f0a8cf7-d605-4250-f56b-aaa106e2087e" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " 0%| | 0/4 [00:00\n", - " \n", - " \n", - " \n", - " image_name (PandasSeriesColumn)\n", - " face_id_in_image (PandasSeriesColumn)\n", - " face_box_top (PandasSeriesColumn)\n", - " face_box_left (PandasSeriesColumn)\n", - " face_box_right (PandasSeriesColumn)\n", - " face_box_bottom (PandasSeriesColumn)\n", - " face_box_cofidence (PandasSeriesColumn)\n", - " expression_label (PandasSeriesColumn)\n", - " example_id (PandasSeriesColumn)\n", - " image (ImageColumn)\n", - " face_image (LambdaColumn)\n", - " \n", - " \n", - " \n", - " \n", - " 0\n", - " angry_actor_104.jpg\n", - " 0\n", - " 28\n", - " 113\n", - " 226\n", - " 141\n", - " 22.93620\n", - " 0\n", - " angry_actor_104_0\n", - " \n", - " \n", - " \n", - " \n", - " 1\n", - " angry_actor_109.jpg\n", - " 0\n", - " 31\n", - " 157\n", - " 345\n", - " 219\n", - " 50.30560\n", - " 0\n", - " angry_actor_109_0\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " angry_actor_120.jpg\n", - " 1\n", - " 53\n", - " 53\n", - " 372\n", - " 372\n", - " 13.94340\n", - " 2\n", - " angry_actor_120_1\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " angry_actor_13.jpg\n", - " 0\n", - " 77\n", - " 51\n", - " 362\n", - " 388\n", - " 85.81040\n", - " 3\n", - " angry_actor_13_0\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " angry_actor_132.jpg\n", - " 0\n", - " 95\n", - " 31\n", - " 412\n", - " 476\n", - " 82.39480\n", - " 0\n", - " angry_actor_132_0\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " angry_actor_137.jpg\n", - " 0\n", - " 93\n", - " 468\n", - " 842\n", - " 467\n", - " 88.95190\n", - " 0\n", - " angry_actor_137_0\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " angry_actor_139.jpg\n", - " 0\n", - " 0\n", - " 0\n", - " 1127\n", - " 1127\n", - " 33.52480\n", - " 0\n", - " angry_actor_139_0\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " angry_actor_14.jpg\n", - " 0\n", - " 13\n", - " 120\n", - " 200\n", - " 93\n", - " 39.75540\n", - " 0\n", - " angry_actor_14_0\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " angry_actor_147.jpg\n", - " 1\n", - " 119\n", - " 47\n", - " 142\n", - " 214\n", - " 8.79739\n", - " 6\n", - " angry_actor_147_1\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " angry_actor_150.jpg\n", - " 0\n", - " 56\n", - " 263\n", - " 376\n", - " 169\n", - " 81.87920\n", - " 0\n", - " angry_actor_150_0\n", - " \n", - " \n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 88590\n", - " afraid_woman_204.jpg\n", - " 0\n", - " 20\n", - " 13\n", - " 93\n", - " 100\n", - " 74.59500\n", - " 6\n", - " afraid_woman_204_0\n", - " \n", - " \n", - " \n", - " \n", - " 88591\n", - " afraid_girl_13.jpg\n", - " 0\n", - " 0\n", - " 210\n", - " 525\n", - " 315\n", - " 33.74280\n", - " 4\n", - " afraid_girl_13_0\n", - " \n", - " \n", - " \n", - " \n", - " 88592\n", - " surprised_expression_629.jpg\n", - " 0\n", - " 8\n", - " 89\n", - " 186\n", - " 105\n", - " 44.09140\n", - " 5\n", - " surprised_expression_629_0\n", - " \n", - " \n", - " \n", - " \n", - " 88593\n", - " surprised_expression_409.jpg\n", - " 0\n", - " 80\n", - " 46\n", - " 184\n", - " 218\n", - " 63.80690\n", - " 5\n", - " surprised_expression_409_0\n", - " \n", - " \n", - " \n", - " \n", - " 88594\n", - " expressionless_husband_673.jpg\n", - " 0\n", - " 48\n", - " 194\n", - " 388\n", - " 242\n", - " 82.29750\n", - " 4\n", - " expressionless_husband_673_0\n", - " \n", - " \n", - " \n", - " \n", - " 88595\n", - " surprised_expression_546.jpg\n", - " 0\n", - " 70\n", - " 70\n", - " 351\n", - " 351\n", - " 37.71170\n", - " 5\n", - " surprised_expression_546_0\n", - " \n", - " \n", - " \n", - " \n", - " 88596\n", - " surprised_expression_381.jpg\n", - " 0\n", - " 51\n", - " 61\n", - " 117\n", - " 107\n", - " 91.63070\n", - " 5\n", - " surprised_expression_381_0\n", - " \n", - " \n", - " \n", - " \n", - " 88597\n", - " surprised_expression_395.jpg\n", - " 0\n", - " 27\n", - " 95\n", - " 258\n", - " 190\n", - " 96.28610\n", - " 5\n", - " surprised_expression_395_0\n", - " \n", - " \n", - " \n", - " \n", - " 88598\n", - " ecstatic_asian_31.jpg\n", - " 0\n", - " 60\n", - " 136\n", - " 184\n", - " 108\n", - " 39.92230\n", - " 3\n", - " ecstatic_asian_31_0\n", - " \n", - " \n", - " \n", - " \n", - " 88599\n", - " surprised_expression_394.jpg\n", - " 0\n", - " 47\n", - " 38\n", - " 152\n", - " 161\n", - " 77.77580\n", - " 5\n", - " surprised_expression_394_0\n", - " \n", - " \n", - " \n", - " \n", - "" - ], - "text/plain": [ - "DataPanel(nrows: 88600, ncols: 11)" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import meerkat as mk\n", - "mk.get(\"expw\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import hapi" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
taskdatasetapidatepathcost_per_10k
0scrcommandgoogle_scr20-03-29scr/command/google_scr/20-03-29.json60.00
1scrcommandibm_scr20-03-29scr/command/ibm_scr/20-03-29.json25.00
2scrcommanddeepspeech_lib_scr20-03-29scr/command/deepspeech_lib_scr/20-03-29.json0.02
3scrcommandmicrosoft_scr20-03-29scr/command/microsoft_scr/20-03-29.json41.00
4scrcommandibm_scr22-05-23scr/command/ibm_scr/22-05-23.json25.00
.....................
171ferferplusfacepp_fer22-05-23fer/ferplus/facepp_fer/22-05-23.json5.00
172ferferplusgoogle_fer22-05-23fer/ferplus/google_fer/22-05-23.json15.00
173saimdbbaidu_sa21-02-21sa/imdb/baidu_sa/21-02-21.json3.50
174saimdbamazon_sa21-02-21sa/imdb/amazon_sa/21-02-21.json0.75
175saimdbgoogle_sa21-02-21sa/imdb/google_sa/21-02-21.json2.50
\n", - "

176 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " task dataset api date \\\n", - "0 scr command google_scr 20-03-29 \n", - "1 scr command ibm_scr 20-03-29 \n", - "2 scr command deepspeech_lib_scr 20-03-29 \n", - "3 scr command microsoft_scr 20-03-29 \n", - "4 scr command ibm_scr 22-05-23 \n", - ".. ... ... ... ... \n", - "171 fer ferplus facepp_fer 22-05-23 \n", - "172 fer ferplus google_fer 22-05-23 \n", - "173 sa imdb baidu_sa 21-02-21 \n", - "174 sa imdb amazon_sa 21-02-21 \n", - "175 sa imdb google_sa 21-02-21 \n", - "\n", - " path cost_per_10k \n", - "0 scr/command/google_scr/20-03-29.json 60.00 \n", - "1 scr/command/ibm_scr/20-03-29.json 25.00 \n", - "2 scr/command/deepspeech_lib_scr/20-03-29.json 0.02 \n", - "3 scr/command/microsoft_scr/20-03-29.json 41.00 \n", - "4 scr/command/ibm_scr/22-05-23.json 25.00 \n", - ".. ... ... \n", - "171 fer/ferplus/facepp_fer/22-05-23.json 5.00 \n", - "172 fer/ferplus/google_fer/22-05-23.json 15.00 \n", - "173 sa/imdb/baidu_sa/21-02-21.json 3.50 \n", - "174 sa/imdb/amazon_sa/21-02-21.json 0.75 \n", - "175 sa/imdb/google_sa/21-02-21.json 2.50 \n", - "\n", - "[176 rows x 6 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hapi.list()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
taskdatasetapidatepathcost_per_10k
0scrcommandgoogle_scr20-03-29scr/command/google_scr/20-03-29.json60.00
1scrcommandibm_scr20-03-29scr/command/ibm_scr/20-03-29.json25.00
2scrcommanddeepspeech_lib_scr20-03-29scr/command/deepspeech_lib_scr/20-03-29.json0.02
3scrcommandmicrosoft_scr20-03-29scr/command/microsoft_scr/20-03-29.json41.00
4scrcommandibm_scr22-05-23scr/command/ibm_scr/22-05-23.json25.00
.....................
171ferferplusfacepp_fer22-05-23fer/ferplus/facepp_fer/22-05-23.json5.00
172ferferplusgoogle_fer22-05-23fer/ferplus/google_fer/22-05-23.json15.00
173saimdbbaidu_sa21-02-21sa/imdb/baidu_sa/21-02-21.json3.50
174saimdbamazon_sa21-02-21sa/imdb/amazon_sa/21-02-21.json0.75
175saimdbgoogle_sa21-02-21sa/imdb/google_sa/21-02-21.json2.50
\n", - "

176 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " task dataset api date \\\n", - "0 scr command google_scr 20-03-29 \n", - "1 scr command ibm_scr 20-03-29 \n", - "2 scr command deepspeech_lib_scr 20-03-29 \n", - "3 scr command microsoft_scr 20-03-29 \n", - "4 scr command ibm_scr 22-05-23 \n", - ".. ... ... ... ... \n", - "171 fer ferplus facepp_fer 22-05-23 \n", - "172 fer ferplus google_fer 22-05-23 \n", - "173 sa imdb baidu_sa 21-02-21 \n", - "174 sa imdb amazon_sa 21-02-21 \n", - "175 sa imdb google_sa 21-02-21 \n", - "\n", - " path cost_per_10k \n", - "0 scr/command/google_scr/20-03-29.json 60.00 \n", - "1 scr/command/ibm_scr/20-03-29.json 25.00 \n", - "2 scr/command/deepspeech_lib_scr/20-03-29.json 0.02 \n", - "3 scr/command/microsoft_scr/20-03-29.json 41.00 \n", - "4 scr/command/ibm_scr/22-05-23.json 25.00 \n", - ".. ... ... \n", - "171 fer/ferplus/facepp_fer/22-05-23.json 5.00 \n", - "172 fer/ferplus/google_fer/22-05-23.json 15.00 \n", - "173 sa/imdb/baidu_sa/21-02-21.json 3.50 \n", - "174 sa/imdb/amazon_sa/21-02-21.json 0.75 \n", - "175 sa/imdb/google_sa/21-02-21.json 2.50 \n", - "\n", - "[176 rows x 6 columns]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import hapi\n", - "hapi.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1efdd161866a4cce9b1d47f7594cdbcd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/21 [00:00\n", - " \n", - " \n", - " \n", - " example_id (PandasSeriesColumn)\n", - " confidence (NumpyArrayColumn)\n", - " predicted_label (NumpyArrayColumn)\n", - " image_name (PandasSeriesColumn)\n", - " face_id_in_image (PandasSeriesColumn)\n", - " face_box_top (PandasSeriesColumn)\n", - " face_box_left (PandasSeriesColumn)\n", - " face_box_right (PandasSeriesColumn)\n", - " face_box_bottom (PandasSeriesColumn)\n", - " face_box_cofidence (PandasSeriesColumn)\n", - " expression_label (PandasSeriesColumn)\n", - " image (ImageColumn)\n", - " face_image (LambdaColumn)\n", - " \n", - " \n", - " \n", - " \n", - " 0\n", - " amazed_expression_236_0\n", - " 0.508\n", - " 5\n", - " amazed_expression_236.jpg\n", - " 0\n", - " 14\n", - " 51\n", - " 107\n", - " 70\n", - " 86.3589\n", - " 5\n", - " \n", - " \n", - " \n", - " \n", - " 1\n", - " distressed_wife_565_1\n", - " 0.960\n", - " 6\n", - " distressed_wife_565.jpg\n", - " 1\n", - " 113\n", - " 319\n", - " 455\n", - " 249\n", - " 65.4556\n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 2\n", - " heartbroken_woman_777_0\n", - " 0.998\n", - " 6\n", - " heartbroken_woman_777.jpg\n", - " 0\n", - " 124\n", - " 115\n", - " 230\n", - " 239\n", - " 71.4355\n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 3\n", - " crying_worker_764_0\n", - " 0.730\n", - " 4\n", - " crying_worker_764.jpg\n", - " 0\n", - " 266\n", - " 912\n", - " 1368\n", - " 722\n", - " 63.1153\n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 4\n", - " crying_woman_15_0\n", - " 1.000\n", - " 4\n", - " crying_woman_15.jpg\n", - " 0\n", - " 53\n", - " 187\n", - " 348\n", - " 214\n", - " 106.5000\n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 5\n", - " astound_face_86_0\n", - " 1.000\n", - " 3\n", - " astound_face_86.jpg\n", - " 0\n", - " 120\n", - " 290\n", - " 386\n", - " 216\n", - " 102.9270\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 6\n", - " astound_president_656_5\n", - " 1.000\n", - " 3\n", - " astound_president_656.jpg\n", - " 5\n", - " 400\n", - " 1296\n", - " 1392\n", - " 496\n", - " 60.0189\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 7\n", - " angry_president_302_0\n", - " 0.919\n", - " 6\n", - " angry_president_302.jpg\n", - " 0\n", - " 39\n", - " 136\n", - " 370\n", - " 273\n", - " 65.9237\n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 8\n", - " awe_wife_514_4\n", - " 1.000\n", - " 3\n", - " awe_wife_514.jpg\n", - " 4\n", - " 736\n", - " 504\n", - " 600\n", - " 832\n", - " 74.7429\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 9\n", - " angry_face_151_0\n", - " 0.716\n", - " 6\n", - " angry_face_151.jpg\n", - " 0\n", - " 53\n", - " 79\n", - " 238\n", - " 212\n", - " 93.4123\n", - " 0\n", - " \n", - " \n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 31500\n", - " anxious_son_78_0\n", - " 0.997\n", - " 6\n", - " anxious_son_78.jpg\n", - " 0\n", - " 9\n", - " 4\n", - " 61\n", - " 66\n", - " 66.0885\n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 31501\n", - " amazed_family_807_0\n", - " 1.000\n", - " 3\n", - " amazed_family_807.jpg\n", - " 0\n", - " 518\n", - " 942\n", - " 1022\n", - " 598\n", - " 65.3207\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 31502\n", - " crying_manager_6_0\n", - " 0.849\n", - " 4\n", - " crying_manager_6.jpg\n", - " 0\n", - " 26\n", - " 26\n", - " 185\n", - " 185\n", - " 62.5956\n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - " 31503\n", - " astound_programmer_573_0\n", - " 1.000\n", - " 3\n", - " astound_programmer_573.jpg\n", - " 0\n", - " 64\n", - " 256\n", - " 640\n", - " 448\n", - " 60.7453\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 31504\n", - " astound_teacher_899_0\n", - " 0.605\n", - " 6\n", - " astound_teacher_899.jpg\n", - " 0\n", - " 34\n", - " 396\n", - " 464\n", - " 102\n", - " 62.0064\n", - " 1\n", - " \n", - " \n", - " \n", - " \n", - " 31505\n", - " awe_man_636_1\n", - " 0.987\n", - " 6\n", - " awe_man_636.jpg\n", - " 1\n", - " 28\n", - " 285\n", - " 342\n", - " 85\n", - " 68.1721\n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 31506\n", - " amazed_family_472_6\n", - " 1.000\n", - " 3\n", - " amazed_family_472.jpg\n", - " 6\n", - " 1830\n", - " 327\n", - " 383\n", - " 1886\n", - " 87.3741\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 31507\n", - " hostile_wife_629_1\n", - " 0.991\n", - " 6\n", - " hostile_wife_629.jpg\n", - " 1\n", - " 227\n", - " 1305\n", - " 1418\n", - " 340\n", - " 62.1029\n", - " 6\n", - " \n", - " \n", - " \n", - " \n", - " 31508\n", - " astound_wife_132_1\n", - " 1.000\n", - " 3\n", - " astound_wife_132.jpg\n", - " 1\n", - " 96\n", - " 497\n", - " 593\n", - " 192\n", - " 89.1201\n", - " 3\n", - " \n", - " \n", - " \n", - " \n", - " 31509\n", - " mad_infant_314_0\n", - " 1.000\n", - " 4\n", - " mad_infant_314.jpg\n", - " 0\n", - " 52\n", - " 211\n", - " 528\n", - " 369\n", - " 72.0738\n", - " 4\n", - " \n", - " \n", - " \n", - " \n", - "" - ], - "text/plain": [ - "DataPanel(nrows: 31510, ncols: 13)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "out[\"fer/expw/microsoft_fer/21-02-16\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "module 'meerkat' has no attribute 'datasets'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32mUntitled-2.ipynb Cell 7'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m mk\u001b[39m.\u001b[39;49mdatasets\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mexpw\u001b[39m\u001b[39m\"\u001b[39m)\n", - "\u001b[0;31mAttributeError\u001b[0m: module 'meerkat' has no attribute 'datasets'" - ] - } - ], - "source": [ - "mk.datasets.get(\"expw\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['scr', 'fer', 'ner', 'str', 'sa', 'mic'], dtype=object)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hapi.summary()[\"task\"].unique()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "342a0dab00aa4a859a7d12d66f31f62c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/18 [00:00\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mnumpy\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mnp\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m dp \u001b[39m=\u001b[39m mk\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mceleba\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n", - "File \u001b[0;32m~/code/meerkat/meerkat/datasets/__init__.py:63\u001b[0m, in \u001b[0;36mget\u001b[0;34m(name, dataset_dir, version, download_mode, registry, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[39mif\u001b[39;00m registry \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mmeerkat\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 62\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m---> 63\u001b[0m dataset \u001b[39m=\u001b[39m datasets\u001b[39m.\u001b[39;49mget(\n\u001b[1;32m 64\u001b[0m name\u001b[39m=\u001b[39;49mname,\n\u001b[1;32m 65\u001b[0m dataset_dir\u001b[39m=\u001b[39;49mdataset_dir,\n\u001b[1;32m 66\u001b[0m version\u001b[39m=\u001b[39;49mversion,\n\u001b[1;32m 67\u001b[0m download_mode\u001b[39m=\u001b[39;49mdownload_mode,\n\u001b[1;32m 68\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m 69\u001b[0m )\n\u001b[1;32m 70\u001b[0m \u001b[39mreturn\u001b[39;00m dataset\n\u001b[1;32m 71\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n", - "File \u001b[0;32m~/code/meerkat/meerkat/datasets/registry.py:28\u001b[0m, in \u001b[0;36mRegistry.get\u001b[0;34m(self, name, **kwargs)\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[39mif\u001b[39;00m ret \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 24\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mKeyError\u001b[39;00m(\n\u001b[1;32m 25\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mNo object named \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m found in \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m registry!\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m.\u001b[39mformat(name, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_name)\n\u001b[1;32m 26\u001b[0m )\n\u001b[0;32m---> 28\u001b[0m \u001b[39mreturn\u001b[39;00m ret(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)()\n", - "File \u001b[0;32m~/code/meerkat/meerkat/datasets/abstract.py:63\u001b[0m, in \u001b[0;36mDatasetBuilder.__call__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mis_downloaded():\n\u001b[1;32m 59\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 60\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mDataset \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mname\u001b[39m}\u001b[39;00m\u001b[39m is not downloaded to \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset_dir\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 61\u001b[0m )\n\u001b[0;32m---> 63\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mbuild()\n", - "File \u001b[0;32m~/code/meerkat/meerkat/datasets/celeba/__init__.py:32\u001b[0m, in \u001b[0;36mceleba.build\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mbuild\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m---> 32\u001b[0m df \u001b[39m=\u001b[39m build_celeba_df(dataset_dir\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdataset_dir)\n\u001b[1;32m 33\u001b[0m dp \u001b[39m=\u001b[39m mk\u001b[39m.\u001b[39mDataPanel\u001b[39m.\u001b[39mfrom_pandas(df)\n\u001b[1;32m 34\u001b[0m dp[\u001b[39m\"\u001b[39m\u001b[39mimage\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m mk\u001b[39m.\u001b[39mImageColumn\u001b[39m.\u001b[39mfrom_filepaths(\n\u001b[1;32m 35\u001b[0m filepaths\u001b[39m=\u001b[39mdp[\u001b[39m\"\u001b[39m\u001b[39mimg_path\u001b[39m\u001b[39m\"\u001b[39m], base_dir\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdataset_dir\n\u001b[1;32m 36\u001b[0m )\n", - "File \u001b[0;32m~/code/meerkat/meerkat/datasets/celeba/__init__.py:126\u001b[0m, in \u001b[0;36mbuild_celeba_df\u001b[0;34m(dataset_dir)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[39m\"\"\"Build the dataframe by joining on the attribute, split and identity\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[39mCelebA CSVs.\"\"\"\u001b[39;00m\n\u001b[1;32m 120\u001b[0m \u001b[39m# identity_df = pd.read_csv(\u001b[39;00m\n\u001b[1;32m 121\u001b[0m \u001b[39m# os.path.join(dataset_dir, \"identity_CelebA.txt\"),\u001b[39;00m\n\u001b[1;32m 122\u001b[0m \u001b[39m# delim_whitespace=True,\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[39m# header=None,\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[39m# names=[\"file\", \"identity\"],\u001b[39;00m\n\u001b[1;32m 125\u001b[0m \u001b[39m# )\u001b[39;00m\n\u001b[0;32m--> 126\u001b[0m attr_df \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39;49mread_csv(\n\u001b[1;32m 127\u001b[0m os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49mjoin(dataset_dir, \u001b[39m\"\u001b[39;49m\u001b[39mlist_attr_celeba.csv\u001b[39;49m\u001b[39m\"\u001b[39;49m),\n\u001b[1;32m 128\u001b[0m index_col\u001b[39m=\u001b[39;49m\u001b[39m0\u001b[39;49m,\n\u001b[1;32m 129\u001b[0m )\n\u001b[1;32m 130\u001b[0m attr_df\u001b[39m.\u001b[39mcolumns \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mSeries(attr_df\u001b[39m.\u001b[39mcolumns)\u001b[39m.\u001b[39mapply(\u001b[39mlambda\u001b[39;00m x: x\u001b[39m.\u001b[39mlower())\n\u001b[1;32m 131\u001b[0m attr_df \u001b[39m=\u001b[39m ((attr_df \u001b[39m+\u001b[39m \u001b[39m1\u001b[39m) \u001b[39m/\u001b[39m\u001b[39m/\u001b[39m \u001b[39m2\u001b[39m)\u001b[39m.\u001b[39mrename_axis(\u001b[39m\"\u001b[39m\u001b[39mfile\u001b[39m\u001b[39m\"\u001b[39m)\u001b[39m.\u001b[39mreset_index()\n", - "File \u001b[0;32m~/miniconda3/envs/meerkat/lib/python3.8/site-packages/pandas/util/_decorators.py:311\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments..decorate..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(args) \u001b[39m>\u001b[39m num_allow_args:\n\u001b[1;32m 306\u001b[0m warnings\u001b[39m.\u001b[39mwarn(\n\u001b[1;32m 307\u001b[0m msg\u001b[39m.\u001b[39mformat(arguments\u001b[39m=\u001b[39marguments),\n\u001b[1;32m 308\u001b[0m \u001b[39mFutureWarning\u001b[39;00m,\n\u001b[1;32m 309\u001b[0m stacklevel\u001b[39m=\u001b[39mstacklevel,\n\u001b[1;32m 310\u001b[0m )\n\u001b[0;32m--> 311\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", - "File \u001b[0;32m~/miniconda3/envs/meerkat/lib/python3.8/site-packages/pandas/io/parsers/readers.py:680\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)\u001b[0m\n\u001b[1;32m 665\u001b[0m kwds_defaults \u001b[39m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 666\u001b[0m dialect,\n\u001b[1;32m 667\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 676\u001b[0m defaults\u001b[39m=\u001b[39m{\u001b[39m\"\u001b[39m\u001b[39mdelimiter\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m\"\u001b[39m\u001b[39m,\u001b[39m\u001b[39m\"\u001b[39m},\n\u001b[1;32m 677\u001b[0m )\n\u001b[1;32m 678\u001b[0m kwds\u001b[39m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m--> 680\u001b[0m \u001b[39mreturn\u001b[39;00m _read(filepath_or_buffer, kwds)\n", - "File \u001b[0;32m~/miniconda3/envs/meerkat/lib/python3.8/site-packages/pandas/io/parsers/readers.py:575\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 572\u001b[0m _validate_names(kwds\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mnames\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mNone\u001b[39;00m))\n\u001b[1;32m 574\u001b[0m \u001b[39m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 575\u001b[0m parser \u001b[39m=\u001b[39m TextFileReader(filepath_or_buffer, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwds)\n\u001b[1;32m 577\u001b[0m \u001b[39mif\u001b[39;00m chunksize \u001b[39mor\u001b[39;00m iterator:\n\u001b[1;32m 578\u001b[0m \u001b[39mreturn\u001b[39;00m parser\n", - "File \u001b[0;32m~/miniconda3/envs/meerkat/lib/python3.8/site-packages/pandas/io/parsers/readers.py:933\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 930\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39moptions[\u001b[39m\"\u001b[39m\u001b[39mhas_index_names\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m kwds[\u001b[39m\"\u001b[39m\u001b[39mhas_index_names\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[1;32m 932\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles: IOHandles \u001b[39m|\u001b[39m \u001b[39mNone\u001b[39;00m \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m--> 933\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_engine \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_make_engine(f, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mengine)\n", - "File \u001b[0;32m~/miniconda3/envs/meerkat/lib/python3.8/site-packages/pandas/io/parsers/readers.py:1217\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1213\u001b[0m mode \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mrb\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 1214\u001b[0m \u001b[39m# error: No overload variant of \"get_handle\" matches argument types\u001b[39;00m\n\u001b[1;32m 1215\u001b[0m \u001b[39m# \"Union[str, PathLike[str], ReadCsvBuffer[bytes], ReadCsvBuffer[str]]\"\u001b[39;00m\n\u001b[1;32m 1216\u001b[0m \u001b[39m# , \"str\", \"bool\", \"Any\", \"Any\", \"Any\", \"Any\", \"Any\"\u001b[39;00m\n\u001b[0;32m-> 1217\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles \u001b[39m=\u001b[39m get_handle( \u001b[39m# type: ignore[call-overload]\u001b[39;49;00m\n\u001b[1;32m 1218\u001b[0m f,\n\u001b[1;32m 1219\u001b[0m mode,\n\u001b[1;32m 1220\u001b[0m encoding\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mencoding\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mNone\u001b[39;49;00m),\n\u001b[1;32m 1221\u001b[0m compression\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mcompression\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mNone\u001b[39;49;00m),\n\u001b[1;32m 1222\u001b[0m memory_map\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mmemory_map\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mFalse\u001b[39;49;00m),\n\u001b[1;32m 1223\u001b[0m is_text\u001b[39m=\u001b[39;49mis_text,\n\u001b[1;32m 1224\u001b[0m errors\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mencoding_errors\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39m\"\u001b[39;49m\u001b[39mstrict\u001b[39;49m\u001b[39m\"\u001b[39;49m),\n\u001b[1;32m 1225\u001b[0m storage_options\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49moptions\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39;49m\u001b[39mstorage_options\u001b[39;49m\u001b[39m\"\u001b[39;49m, \u001b[39mNone\u001b[39;49;00m),\n\u001b[1;32m 1226\u001b[0m )\n\u001b[1;32m 1227\u001b[0m \u001b[39massert\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m 1228\u001b[0m f \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mhandles\u001b[39m.\u001b[39mhandle\n", - "File \u001b[0;32m~/miniconda3/envs/meerkat/lib/python3.8/site-packages/pandas/io/common.py:789\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 784\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(handle, \u001b[39mstr\u001b[39m):\n\u001b[1;32m 785\u001b[0m \u001b[39m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[1;32m 786\u001b[0m \u001b[39m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[1;32m 787\u001b[0m \u001b[39mif\u001b[39;00m ioargs\u001b[39m.\u001b[39mencoding \u001b[39mand\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mb\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m ioargs\u001b[39m.\u001b[39mmode:\n\u001b[1;32m 788\u001b[0m \u001b[39m# Encoding\u001b[39;00m\n\u001b[0;32m--> 789\u001b[0m handle \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39;49m(\n\u001b[1;32m 790\u001b[0m handle,\n\u001b[1;32m 791\u001b[0m ioargs\u001b[39m.\u001b[39;49mmode,\n\u001b[1;32m 792\u001b[0m encoding\u001b[39m=\u001b[39;49mioargs\u001b[39m.\u001b[39;49mencoding,\n\u001b[1;32m 793\u001b[0m errors\u001b[39m=\u001b[39;49merrors,\n\u001b[1;32m 794\u001b[0m newline\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 795\u001b[0m )\n\u001b[1;32m 796\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 797\u001b[0m \u001b[39m# Binary mode\u001b[39;00m\n\u001b[1;32m 798\u001b[0m handle \u001b[39m=\u001b[39m \u001b[39mopen\u001b[39m(handle, ioargs\u001b[39m.\u001b[39mmode)\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/Users/eyubogln/.meerkat/datasets/celeba/main/list_attr_celeba.csv'" - ] - } - ], - "source": [ - "import numpy as np\n", - "dp = mk.get(\"celeba\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "mk.config.display.max_image_height=300" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0722040571db43818fd78732e16eefb9", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/1 [00:00\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dp \u001b[39m=\u001b[39m mk\u001b[39m.\u001b[39;49mget(\u001b[39m\"\u001b[39m\u001b[39mimagenette\u001b[39m\u001b[39m\"\u001b[39m)\n", - "\u001b[0;31mAttributeError\u001b[0m: module 'meerkat' has no attribute 'get'" - ] - } - ], - "source": [ - "mk" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
path (PandasSeriesColumn)noisy_labels_0 (PandasSeriesColumn)noisy_labels_1 (PandasSeriesColumn)noisy_labels_5 (PandasSeriesColumn)noisy_labels_25 (PandasSeriesColumn)noisy_labels_50 (PandasSeriesColumn)is_valid (PandasSeriesColumn)label_id (PandasSeriesColumn)label (PandasSeriesColumn)label_idx (PandasSeriesColumn)split (PandasSeriesColumn)img_path (PandasSeriesColumn)img (ImageColumn)
0train/n02979186/n02979186_9036.JPEGn02979186n02979186n02979186n02979186n02979186Falsen02979186cassette player482traintrain/n02979186/n02979186_9036.JPEG
1train/n02979186/n02979186_11957.JPEGn02979186n02979186n02979186n02979186n03000684Falsen02979186cassette player482traintrain/n02979186/n02979186_11957.JPEG
2train/n02979186/n02979186_9715.JPEGn02979186n02979186n02979186n03417042n03000684Falsen02979186cassette player482traintrain/n02979186/n02979186_9715.JPEG
3train/n02979186/n02979186_21736.JPEGn02979186n02979186n02979186n02979186n03417042Falsen02979186cassette player482traintrain/n02979186/n02979186_21736.JPEG
4train/n02979186/ILSVRC2012_val_00046953.JPEGn02979186n02979186n02979186n02979186n03394916Falsen02979186cassette player482traintrain/n02979186/ILSVRC2012_val_00046953.JPEG
5train/n02979186/n02979186_10568.JPEGn02979186n02979186n02979186n02979186n03000684Falsen02979186cassette player482traintrain/n02979186/n02979186_10568.JPEG
6train/n02979186/n02979186_2745.JPEGn02979186n02979186n02979186n03394916n02979186Falsen02979186cassette player482traintrain/n02979186/n02979186_2745.JPEG
7train/n02979186/n02979186_3529.JPEGn02979186n02979186n02979186n02979186n03417042Falsen02979186cassette player482traintrain/n02979186/n02979186_3529.JPEG
8train/n02979186/n02979186_10756.JPEGn02979186n02979186n02979186n02979186n03445777Falsen02979186cassette player482traintrain/n02979186/n02979186_10756.JPEG
9train/n02979186/n02979186_7058.JPEGn02979186n02979186n02979186n02979186n02979186Falsen02979186cassette player482traintrain/n02979186/n02979186_7058.JPEG
" - ], - "text/plain": [ - "DataPanel(nrows: 10, ncols: 13)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dp" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import hapi\n", - "hapi.config.data_dir = \"/Users/eyubogln/code/hapi/data/tasks\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1c9365e196fe48f3b435e9e72bf9c2fb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "preds = hapi.get_predictions(dataset=\"expw\", include_data=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "preds" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
example_id (PandasSeriesColumn)confidence (NumpyArrayColumn)predicted_label (NumpyArrayColumn)image_name (PandasSeriesColumn)face_id_in_image (PandasSeriesColumn)face_box_top (PandasSeriesColumn)face_box_left (PandasSeriesColumn)face_box_right (PandasSeriesColumn)face_box_bottom (PandasSeriesColumn)face_box_cofidence (PandasSeriesColumn)expression_label (PandasSeriesColumn)image (ImageColumn)
0amazed_expression_236_00.5085amazed_expression_236.jpg014511077086.35895
1distressed_wife_565_10.9606distressed_wife_565.jpg111331945524965.45566
2heartbroken_woman_777_00.9986heartbroken_woman_777.jpg012411523023971.43556
3crying_worker_764_00.7304crying_worker_764.jpg0266912136872263.11534
4crying_woman_15_01.0004crying_woman_15.jpg053187348214106.50004
5astound_face_86_01.0003astound_face_86.jpg0120290386216102.92703
6astound_president_656_51.0003astound_president_656.jpg54001296139249660.01893
7angry_president_302_00.9196angry_president_302.jpg03913637027365.92376
8awe_wife_514_41.0003awe_wife_514.jpg473650460083274.74293
9angry_face_151_00.7166angry_face_151.jpg0537923821293.41230
.......................................
31500anxious_son_78_00.9976anxious_son_78.jpg094616666.08856
31501amazed_family_807_01.0003amazed_family_807.jpg0518942102259865.32073
31502crying_manager_6_00.8494crying_manager_6.jpg0262618518562.59564
31503astound_programmer_573_01.0003astound_programmer_573.jpg06425664044860.74533
31504astound_teacher_899_00.6056astound_teacher_899.jpg03439646410262.00641
31505awe_man_636_10.9876awe_man_636.jpg1282853428568.17216
31506amazed_family_472_61.0003amazed_family_472.jpg61830327383188687.37413
31507hostile_wife_629_10.9916hostile_wife_629.jpg12271305141834062.10296
31508astound_wife_132_11.0003astound_wife_132.jpg19649759319289.12013
31509mad_infant_314_01.0004mad_infant_314.jpg05221152836972.07384
" - ], - "text/plain": [ - "DataPanel(nrows: 31510, ncols: 12)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "preds[\"fer/expw/microsoft_fer/21-02-16\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "pred_dp = mk.DataPanel(predictions[\"fer/expw/microsoft_fer/21-02-16\"])\n", - "dp = pred_dp.merge(dp, on=\"example_id\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "31510" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(dp)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.7278641701047287" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(dp[\"predicted_label\"].to_pandas() == dp[\"expression_label\"]).mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
confidence (NumpyArrayColumn)predicted_label (NumpyArrayColumn)suffix (PandasSeriesColumn)example_id (PandasSeriesColumn)
00.50850amazed_expression_236
10.96061distressed_wife_565
20.99860heartbroken_woman_777
30.73040crying_worker_764
41.00040crying_woman_15
51.00030astound_face_86
61.00035astound_president_656
70.91960angry_president_302
81.00034awe_wife_514
90.71660angry_face_151
...............
315000.99760anxious_son_78
315011.00030amazed_family_807
315020.84940crying_manager_6
315031.00030astound_programmer_573
315040.60560astound_teacher_899
315050.98761awe_man_636
315061.00036amazed_family_472
315070.99161hostile_wife_629
315081.00031astound_wife_132
315091.00040mad_infant_314
" - ], - "text/plain": [ - "DataPanel(nrows: 31510, ncols: 4)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pred_dp" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
example_id (PandasSeriesColumn)confidence (NumpyArrayColumn)predicted_label (NumpyArrayColumn)suffix (PandasSeriesColumn)image_name (PandasSeriesColumn)face_id_in_image (PandasSeriesColumn)face_box_top (PandasSeriesColumn)face_box_left (PandasSeriesColumn)face_box_right (PandasSeriesColumn)face_box_bottom (PandasSeriesColumn)face_box_cofidence (PandasSeriesColumn)expression_label (PandasSeriesColumn)image (ImageColumn)
0amazed_expression_2360.50850amazed_expression_236.jpg014511077086.35895
1distressed_wife_5650.96061distressed_wife_565.jpg111331945524965.45566
2heartbroken_woman_7770.99860heartbroken_woman_777.jpg012411523023971.43556
3crying_worker_7640.73040crying_worker_764.jpg0266912136872263.11534
4crying_woman_151.00040crying_woman_15.jpg053187348214106.50004
5astound_face_861.00030astound_face_86.jpg0120290386216102.92703
6astound_president_6561.00035astound_president_656.jpg254016232470271.33333
7astound_president_6561.00035astound_president_656.jpg635278488044857.20313
8astound_president_6561.00035astound_president_656.jpg146458872359976.96983
9astound_president_6561.00035astound_president_656.jpg146458872359976.96983
..........................................
69627distressed_couple_1220.85460distressed_couple_122.jpg07232539213980.92773
69628heartbroken_student_8190.68350heartbroken_student_819.jpg0646444944975.87613
69629anxious_son_780.99760anxious_son_78.jpg094616666.08856
69630amazed_family_8071.00030amazed_family_807.jpg25981242130966538.92593
69631amazed_family_8071.00030amazed_family_807.jpg0518942102259865.32073
69632crying_manager_60.84940crying_manager_6.jpg0262618518562.59564
69633astound_programmer_5731.00030astound_programmer_573.jpg06425664044860.74533
69634astound_teacher_8990.60560astound_teacher_899.jpg03439646410262.00641
69635awe_man_6360.98761awe_man_636.jpg1282853428568.17216
69636mad_infant_3141.00040mad_infant_314.jpg05221152836972.07384
" - ], - "text/plain": [ - "DataPanel(nrows: 69637, ncols: 13)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pred_dp.merge(dp, on=\"example_id\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
image_name (PandasSeriesColumn)face_id_in_image (PandasSeriesColumn)face_box_top (PandasSeriesColumn)face_box_left (PandasSeriesColumn)face_box_right (PandasSeriesColumn)face_box_bottom (PandasSeriesColumn)face_box_cofidence (PandasSeriesColumn)expression_label (PandasSeriesColumn)image (ImageColumn)
0angry_actor_104.jpg02811322614122.936200
1angry_actor_109.jpg03115734521950.305600
2angry_actor_120.jpg1535337237213.943402
3angry_actor_13.jpg0775136238885.810403
4angry_actor_132.jpg0953141247682.394800
5angry_actor_137.jpg09346884246788.951900
6angry_actor_139.jpg0001127112733.524800
7angry_actor_14.jpg0131202009339.755400
8angry_actor_147.jpg1119471422148.797396
9angry_actor_150.jpg05626337616981.879200
..............................
91783afraid_woman_204.jpg020139310074.595006
91784afraid_girl_13.jpg0021052531533.742804
91785surprised_expression_629.jpg088918610544.091405
91786surprised_expression_409.jpg0804618421863.806905
91787expressionless_husband_673.jpg04819438824282.297504
91788surprised_expression_546.jpg0707035135137.711705
91789surprised_expression_381.jpg0516111710791.630705
91790surprised_expression_395.jpg0279525819096.286105
91791ecstatic_asian_31.jpg06013618410839.922303
91792surprised_expression_394.jpg0473815216177.775805
" - ], - "text/plain": [ - "DataPanel(nrows: 91793, ncols: 9)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dp" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from tqdm.auto import tqdm\n", - "df = pd.read_csv(\n", - " \"/Users/eyubogln/.meerkat/datasets/expw/main/label/label.lst\",\n", - " delimiter=\" \",\n", - " names=[\"image_name\", \"face_id_in_image\", \"face_box_top\", \"face_box_left\", \"face_box_right\", \"face_box_bottom\", \"face_box_cofidence\", \"expression_label\"]\n", - ")\n", - "# for name in tqdm(df[\"image_name\"]):\n", - "# if not os.path.exists(\n", - "# os.path.join(\n", - "# \"/Users/eyubogln/.meerkat/datasets/expw/main/image/origin\",\n", - "# name\n", - "# )\n", - "# ):\n", - "# raise ValueError\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "assert df[\"image_name\"].apply(lambda name: os.path.exists(\n", - " os.path.join(\n", - " \"/Users/eyubogln/.meerkat/datasets/expw/main/image/origin\",\n", - " name\n", - " )\n", - " )\n", - ").all()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 angry_actor_104.jpg\n", - "1 angry_actor_109.jpg\n", - "2 angry_actor_120.jpg\n", - "3 angry_actor_13.jpg\n", - "4 angry_actor_132.jpg\n", - " ... \n", - "91788 surprised_expression_546.jpg\n", - "91789 surprised_expression_381.jpg\n", - "91790 surprised_expression_395.jpg\n", - "91791 ecstatic_asian_31.jpg\n", - "91792 surprised_expression_394.jpg\n", - "Name: image_name, Length: 91793, dtype: object" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 12%|█▏ | 131M/1.05G [1:06:03<7:44:32, 32.9kB/s]" - ] - } - ], - "source": [ - "df[\"image_name\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
namedescriptioncitationhomepagelicensetags
0pascalNoneNoneNoneNoneNone
1imagenetteImagenette is a subset of 10 easily classified...Nonehttps://github.com/fastai/imagenetteNone[image_classification, computer_vision]
\n", - "
" - ], - "text/plain": [ - " name description citation \\\n", - "0 pascal None None \n", - "1 imagenette Imagenette is a subset of 10 easily classified... None \n", - "\n", - " homepage license \\\n", - "0 None None \n", - "1 https://github.com/fastai/imagenette None \n", - "\n", - " tags \n", - "0 None \n", - "1 [image_classification, computer_vision] " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rows = []\n", - "for name, builder in mk.datasets.datasets:\n", - " rows.append(\n", - " builder.info.__dict__\n", - " )\n", - "pd.DataFrame(rows)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 citationdescriptionhomepagelicensenametags
0NoneNoneNoneNonepascalNone
1NoneImagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).https://github.com/fastai/imagenetteNoneimagenette['image_classification', 'computer_vision']
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import HTML\n", - "dp = mk.datasets.catalog\n", - "df = dp.to_pandas()\n", - "style = df.style.set_table_styles({\n", - " \"description\":[\n", - " {\n", - " \"selector\": '', \n", - " \"props\": \"max-width: 50%;\"\n", - " }\n", - " ]\n", - " }\n", - ")\n", - "HTML(style.to_html(index=))" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
citationdescriptionhomepagelicensetags
name
pascalNoneNoneNoneNoneNone
imagenetteNoneImagenette is a subset of 10 easily classified...https://github.com/fastai/imagenetteNone[image_classification, computer_vision]
\n", - "
" - ], - "text/plain": [ - " citation description \\\n", - "name \n", - "pascal None None \n", - "imagenette None Imagenette is a subset of 10 easily classified... \n", - "\n", - " homepage license \\\n", - "name \n", - "pascal None None \n", - "imagenette https://github.com/fastai/imagenette None \n", - "\n", - " tags \n", - "name \n", - "pascal None \n", - "imagenette [image_classification, computer_vision] " - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.set_index(\"name\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
citationdescriptionhomepagelicensenametags
0NoneNoneNoneNonepascalNone
1NoneImagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).https://github.com/fastai/imagenetteNoneimagenette[image_classification, computer_vision]
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "HTML(df.to_html())" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
citation (ListColumn)description (ListColumn)homepage (ListColumn)license (ListColumn)name (PandasSeriesColumn)tags (ListColumn)
0NoneNoneNoneNonepascalNone
1None'Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).''https://github.com/fastai/imagenette'Noneimagenette['image_classification', 'computer_vision']
" - ], - "text/plain": [ - "DataPanel(nrows: 2, ncols: 6)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mk.datasets.datasets.catalog" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import DownloadManager\n", - "manager = DownloadManager(\n", - " dataset_name=\"test\",\n", - " data_dir=\"/Users/eyubogln/.meerkat/datasets/test\",\n", - " base_path=\"/Users/eyubogln/.meerkat/datasets/test\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from meerkat.datasets.utils import download_url\n", - "out = download_url(\n", - " \"https://storage.googleapis.com/hapi-data/hapi.tar.gz\", \n", - " \"/Users/eyubogln/.meerkat/datasets/test\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from meerkat.datasets.utils import extract\n", - "data = extract(out, \"/Users/eyubogln/.meerkat/datasets/test/hapi\")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets.utils.file_utils import get_from_cache" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "extract(\n", - " \n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "Couldn't find a dataset script at /Users/eyubogln/code/hapi/examples/sdfkjsdfh/sdfkjsdfh.py or any data file in the same directory. Couldn't find 'sdfkjsdfh' on the Hugging Face Hub either: FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/master/datasets/sdfkjsdfh/sdfkjsdfh.py", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/Users/eyubogln/code/hapi/examples/dev.ipynb Cell 4'\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mdatasets\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m ds \u001b[39m=\u001b[39m datasets\u001b[39m.\u001b[39;49mload_dataset(\n\u001b[1;32m 3\u001b[0m path\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39msdfkjsdfh\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m 4\u001b[0m )\n", - "File \u001b[0;32m~/miniconda3/envs/domino/lib/python3.8/site-packages/datasets/load.py:1664\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)\u001b[0m\n\u001b[1;32m 1661\u001b[0m ignore_verifications \u001b[39m=\u001b[39m ignore_verifications \u001b[39mor\u001b[39;00m save_infos\n\u001b[1;32m 1663\u001b[0m \u001b[39m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 1664\u001b[0m builder_instance \u001b[39m=\u001b[39m load_dataset_builder(\n\u001b[1;32m 1665\u001b[0m path\u001b[39m=\u001b[39;49mpath,\n\u001b[1;32m 1666\u001b[0m name\u001b[39m=\u001b[39;49mname,\n\u001b[1;32m 1667\u001b[0m data_dir\u001b[39m=\u001b[39;49mdata_dir,\n\u001b[1;32m 1668\u001b[0m data_files\u001b[39m=\u001b[39;49mdata_files,\n\u001b[1;32m 1669\u001b[0m cache_dir\u001b[39m=\u001b[39;49mcache_dir,\n\u001b[1;32m 1670\u001b[0m features\u001b[39m=\u001b[39;49mfeatures,\n\u001b[1;32m 1671\u001b[0m download_config\u001b[39m=\u001b[39;49mdownload_config,\n\u001b[1;32m 1672\u001b[0m download_mode\u001b[39m=\u001b[39;49mdownload_mode,\n\u001b[1;32m 1673\u001b[0m revision\u001b[39m=\u001b[39;49mrevision,\n\u001b[1;32m 1674\u001b[0m use_auth_token\u001b[39m=\u001b[39;49muse_auth_token,\n\u001b[1;32m 1675\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mconfig_kwargs,\n\u001b[1;32m 1676\u001b[0m )\n\u001b[1;32m 1678\u001b[0m \u001b[39m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 1679\u001b[0m \u001b[39mif\u001b[39;00m streaming:\n", - "File \u001b[0;32m~/miniconda3/envs/domino/lib/python3.8/site-packages/datasets/load.py:1490\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs)\u001b[0m\n\u001b[1;32m 1488\u001b[0m download_config \u001b[39m=\u001b[39m download_config\u001b[39m.\u001b[39mcopy() \u001b[39mif\u001b[39;00m download_config \u001b[39melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 1489\u001b[0m download_config\u001b[39m.\u001b[39muse_auth_token \u001b[39m=\u001b[39m use_auth_token\n\u001b[0;32m-> 1490\u001b[0m dataset_module \u001b[39m=\u001b[39m dataset_module_factory(\n\u001b[1;32m 1491\u001b[0m path,\n\u001b[1;32m 1492\u001b[0m revision\u001b[39m=\u001b[39;49mrevision,\n\u001b[1;32m 1493\u001b[0m download_config\u001b[39m=\u001b[39;49mdownload_config,\n\u001b[1;32m 1494\u001b[0m download_mode\u001b[39m=\u001b[39;49mdownload_mode,\n\u001b[1;32m 1495\u001b[0m data_dir\u001b[39m=\u001b[39;49mdata_dir,\n\u001b[1;32m 1496\u001b[0m data_files\u001b[39m=\u001b[39;49mdata_files,\n\u001b[1;32m 1497\u001b[0m )\n\u001b[1;32m 1499\u001b[0m \u001b[39m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 1500\u001b[0m builder_cls \u001b[39m=\u001b[39m import_main_class(dataset_module\u001b[39m.\u001b[39mmodule_path)\n", - "File \u001b[0;32m~/miniconda3/envs/domino/lib/python3.8/site-packages/datasets/load.py:1238\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, data_dir, data_files, **download_kwargs)\u001b[0m\n\u001b[1;32m 1236\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mConnectionError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mCouln\u001b[39m\u001b[39m'\u001b[39m\u001b[39mt reach the Hugging Face Hub for dataset \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{\u001b[39;00mpath\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m: \u001b[39m\u001b[39m{\u001b[39;00me1\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m) \u001b[39mfrom\u001b[39;00m \u001b[39mNone\u001b[39m\n\u001b[1;32m 1237\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(e1, \u001b[39mFileNotFoundError\u001b[39;00m):\n\u001b[0;32m-> 1238\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mFileNotFoundError\u001b[39;00m(\n\u001b[1;32m 1239\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mCouldn\u001b[39m\u001b[39m'\u001b[39m\u001b[39mt find a dataset script at \u001b[39m\u001b[39m{\u001b[39;00mrelative_to_absolute_path(combined_path)\u001b[39m}\u001b[39;00m\u001b[39m or any data file in the same directory. \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 1240\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mCouldn\u001b[39m\u001b[39m'\u001b[39m\u001b[39mt find \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{\u001b[39;00mpath\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m on the Hugging Face Hub either: \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(e1)\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m: \u001b[39m\u001b[39m{\u001b[39;00me1\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[1;32m 1241\u001b[0m ) \u001b[39mfrom\u001b[39;00m \u001b[39mNone\u001b[39m\n\u001b[1;32m 1242\u001b[0m \u001b[39mraise\u001b[39;00m e1 \u001b[39mfrom\u001b[39;00m \u001b[39mNone\u001b[39m\n\u001b[1;32m 1243\u001b[0m \u001b[39melse\u001b[39;00m:\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: Couldn't find a dataset script at /Users/eyubogln/code/hapi/examples/sdfkjsdfh/sdfkjsdfh.py or any data file in the same directory. Couldn't find 'sdfkjsdfh' on the Hugging Face Hub either: FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/master/datasets/sdfkjsdfh/sdfkjsdfh.py" - ] - } - ], - "source": [ - "import datasets\n", - "ds = datasets.load_dataset(\n", - " path=\"sdfkjsdfh\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Dataset({\n", - " features: ['img', 'label'],\n", - " num_rows: 50000\n", - "})" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds[\"train\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from meerkat.contrib.pascal import build_pascal_2012_dp\n", - "dp = build_pascal_2012_dp(dataset_dir=\"/Users/eyubogln/data/pascal\", download=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
id (PandasSeriesColumn)split (PandasSeriesColumn)file_name (PandasSeriesColumn)image (ImageColumn)aeroplane (PandasSeriesColumn)bicycle (PandasSeriesColumn)bird (PandasSeriesColumn)boat (PandasSeriesColumn)bottle (PandasSeriesColumn)bus (PandasSeriesColumn)car (PandasSeriesColumn)cat (PandasSeriesColumn)chair (PandasSeriesColumn)cow (PandasSeriesColumn)diningtable (PandasSeriesColumn)dog (PandasSeriesColumn)horse (PandasSeriesColumn)motorbike (PandasSeriesColumn)person (PandasSeriesColumn)pottedplant (PandasSeriesColumn)sheep (PandasSeriesColumn)sofa (PandasSeriesColumn)train (PandasSeriesColumn)tvmonitor (PandasSeriesColumn)
02008_000008train2008_000008.jpg00000000000010100000
12008_000015train2008_000015.jpg00001000000000000000
22008_000019train2008_000019.jpg00000000000100000000
32008_000023train2008_000023.jpg00001000000000100001
42008_000028train2008_000028.jpg00000010000000000000
...........................................................................
115352011_003261val2011_003261.jpg01000000000000100000
115362011_003262val2011_003262.jpg00001000001000100000
115372011_003269val2011_003269.jpg00000010000000000000
115382011_003271val2011_003271.jpg00001000000000000000
115392011_003275val2011_003275.jpg10000000000000000000
" - ], - "text/plain": [ - "DataPanel(nrows: 11540, ncols: 24)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dp" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 4/4 [00:00<00:00, 24.51it/s]\n" - ] - }, - { - "data": { - "text/plain": [ - "dict_keys(['mic/pascal/google_mic/20-10-28', 'mic/pascal/microsoft_mic/20-10-28', 'mic/pascal/google_mic/22-02-14_v080', 'mic/pascal/microsoft_mic/22-02-14_v080'])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import hapi\n", - "hapi.config.data_dir = \"/Users/eyubogln/code/hapi/data/tasks\"\n", - "hapi.get_predictions(task=\"mic\", dataset=\"pascal\", api=[\"google_mic\", \"microsoft_mic\"]).keys()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 0%| | 0/2 [00:00\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m hapi\u001b[39m.\u001b[39;49mget_predictions(task\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mmic\u001b[39;49m\u001b[39m\"\u001b[39;49m, dataset\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mcoco\u001b[39;49m\u001b[39m\"\u001b[39;49m, api\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mgoogle_mic\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n", - "File \u001b[0;32m~/code/hapi/hapi/__init__.py:85\u001b[0m, in \u001b[0;36mget_predictions\u001b[0;34m(task, dataset, api, date)\u001b[0m\n\u001b[1;32m 83\u001b[0m preds \u001b[39m=\u001b[39m {}\n\u001b[1;32m 84\u001b[0m \u001b[39mfor\u001b[39;00m path \u001b[39min\u001b[39;00m tqdm(df[\u001b[39m\"\u001b[39m\u001b[39mpath\u001b[39m\u001b[39m\"\u001b[39m]):\n\u001b[0;32m---> 85\u001b[0m preds[os\u001b[39m.\u001b[39;49mpath\u001b[39m.\u001b[39;49msplittext(path)[\u001b[39m0\u001b[39m]] \u001b[39m=\u001b[39m json\u001b[39m.\u001b[39mload(\n\u001b[1;32m 86\u001b[0m \u001b[39mopen\u001b[39m(os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mjoin(config\u001b[39m.\u001b[39mdata_dir, path))\n\u001b[1;32m 87\u001b[0m )\n\u001b[1;32m 88\u001b[0m \u001b[39mreturn\u001b[39;00m preds\n", - "\u001b[0;31mAttributeError\u001b[0m: module 'posixpath' has no attribute 'splittext'" - ] - } - ], - "source": [ - "hapi.get_predictions(task=\"mic\", dataset=\"coco\", api=\"google_mic\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "dp = mk.DataPanel.read(\"/Users/eyubogln/code/hapi/data/tasks/str/lsvt/google_str/20-09-20.mk\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "data = dp.to_pandas().to_dict(orient=\"records\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
taskdatasetapidatepathcost_per_10k
0scrcommandibm_scr20-03-29scr/command/ibm_scr/20-03-29.json25.00
1scrcommanddeepspeech_lib_scr20-03-29scr/command/deepspeech_lib_scr/20-03-29.json0.02
2scrcommandgoogle_scr20-03-29scr/command/google_scr/20-03-29.json60.00
3scrcommandmicrosoft_scr20-03-29scr/command/microsoft_scr/20-03-29.json41.00
4scrcommandgoogle_scr22-05-23scr/command/google_scr/22-05-23.json60.00
.....................
171ferferplusfacepp_fer22-05-23fer/ferplus/facepp_fer/22-05-23.json5.00
172ferferplusmicrosoft_fer22-05-23fer/ferplus/microsoft_fer/22-05-23.json5.00
173saimdbbaidu_sa21-02-21sa/imdb/baidu_sa/21-02-21.json3.50
174saimdbgoogle_sa21-02-21sa/imdb/google_sa/21-02-21.json2.50
175saimdbamazon_sa21-02-21sa/imdb/amazon_sa/21-02-21.json0.75
\n", - "

176 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " task dataset api date \\\n", - "0 scr command ibm_scr 20-03-29 \n", - "1 scr command deepspeech_lib_scr 20-03-29 \n", - "2 scr command google_scr 20-03-29 \n", - "3 scr command microsoft_scr 20-03-29 \n", - "4 scr command google_scr 22-05-23 \n", - ".. ... ... ... ... \n", - "171 fer ferplus facepp_fer 22-05-23 \n", - "172 fer ferplus microsoft_fer 22-05-23 \n", - "173 sa imdb baidu_sa 21-02-21 \n", - "174 sa imdb google_sa 21-02-21 \n", - "175 sa imdb amazon_sa 21-02-21 \n", - "\n", - " path cost_per_10k \n", - "0 scr/command/ibm_scr/20-03-29.json 25.00 \n", - "1 scr/command/deepspeech_lib_scr/20-03-29.json 0.02 \n", - "2 scr/command/google_scr/20-03-29.json 60.00 \n", - "3 scr/command/microsoft_scr/20-03-29.json 41.00 \n", - "4 scr/command/google_scr/22-05-23.json 60.00 \n", - ".. ... ... \n", - "171 fer/ferplus/facepp_fer/22-05-23.json 5.00 \n", - "172 fer/ferplus/microsoft_fer/22-05-23.json 5.00 \n", - "173 sa/imdb/baidu_sa/21-02-21.json 3.50 \n", - "174 sa/imdb/google_sa/21-02-21.json 2.50 \n", - "175 sa/imdb/amazon_sa/21-02-21.json 0.75 \n", - "\n", - "[176 rows x 6 columns]" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "hapi.list()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import hub\n", - "\n", - "ds = hub.load(\"hub://activeloop/spoken_mnist\")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Cloning into '/Users/eyubogln/data/fsdd'...\n" - ] - } - ], - "source": [ - "from meerkat.contrib.fsdd import _download\n", - "\n", - "_download(\"/Users/eyubogln/data/fsdd\")" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Dataset(path='hub://activeloop/spoken_mnist', read_only=True, tensors=['spectrograms', 'labels', 'audio', 'speakers'])" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
image_nameconfidenceoriginal_predicted_labelexample_id
0AudioMNIST_0_01_0.wav0.6917926AudioMNIST_0_01_0.wav
1AudioMNIST_0_01_1.wav0.7065176AudioMNIST_0_01_1.wav
2AudioMNIST_0_01_10.wav0.6303320AudioMNIST_0_01_10.wav
3AudioMNIST_0_01_11.wav0.6363990AudioMNIST_0_01_11.wav
4AudioMNIST_0_01_12.wav0.7984870AudioMNIST_0_01_12.wav
...............
29995AudioMNIST_9_60_5.wav0.6510349AudioMNIST_9_60_5.wav
29996AudioMNIST_9_60_6.wav0.8063979AudioMNIST_9_60_6.wav
29997AudioMNIST_9_60_7.wav0.7787519AudioMNIST_9_60_7.wav
29998AudioMNIST_9_60_8.wav0.6213009AudioMNIST_9_60_8.wav
29999AudioMNIST_9_60_9.wav0.8014049AudioMNIST_9_60_9.wav
\n", - "

30000 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " image_name confidence original_predicted_label \\\n", - "0 AudioMNIST_0_01_0.wav 0.691792 6 \n", - "1 AudioMNIST_0_01_1.wav 0.706517 6 \n", - "2 AudioMNIST_0_01_10.wav 0.630332 0 \n", - "3 AudioMNIST_0_01_11.wav 0.636399 0 \n", - "4 AudioMNIST_0_01_12.wav 0.798487 0 \n", - "... ... ... ... \n", - "29995 AudioMNIST_9_60_5.wav 0.651034 9 \n", - "29996 AudioMNIST_9_60_6.wav 0.806397 9 \n", - "29997 AudioMNIST_9_60_7.wav 0.778751 9 \n", - "29998 AudioMNIST_9_60_8.wav 0.621300 9 \n", - "29999 AudioMNIST_9_60_9.wav 0.801404 9 \n", - "\n", - " example_id \n", - "0 AudioMNIST_0_01_0.wav \n", - "1 AudioMNIST_0_01_1.wav \n", - "2 AudioMNIST_0_01_10.wav \n", - "3 AudioMNIST_0_01_11.wav \n", - "4 AudioMNIST_0_01_12.wav \n", - "... ... \n", - "29995 AudioMNIST_9_60_5.wav \n", - "29996 AudioMNIST_9_60_6.wav \n", - "29997 AudioMNIST_9_60_7.wav \n", - "29998 AudioMNIST_9_60_8.wav \n", - "29999 AudioMNIST_9_60_9.wav \n", - "\n", - "[30000 rows x 4 columns]" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd \n", - "df = pd.read_json(\n", - " \"/Users/eyubogln/code/hapi/data/tasks/scr/amnist/google_scr/20-03-29.json\"\n", - ")\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "interpreter": { - "hash": "96dff6f5004106d02e498591bec065b0f2cd6ad02b2a1a76f1b2f4046570fc42" - }, - "kernelspec": { - "display_name": "Python 3.8.11 ('meerkat')", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.11" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -}