-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauduino.ino
234 lines (196 loc) · 6.9 KB
/
auduino.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Auduino, the Lo-Fi granular synthesiser
//
// by Peter Knight, Tinker.it http://tinker.it
//
// Help: http://code.google.com/p/tinkerit/wiki/Auduino
// More help: http://groups.google.com/group/auduin
//
// Digital 3: Audio out (Digital 11 on ATmega8)
//
// Changelog:
// 20 Sep 2019: Added randomness amount
// 19 Nov 2008: Added support for ATmega8 boards
// 21 Mar 2009: Added support for ATmega328 boards
// 7 Apr 2009: Fixed interrupt vector for ATmega328 boards
// 8 Apr 2009: Added support for ATmega1280 boards (Arduino Mega)
#include <avr/io.h>
#include <avr/interrupt.h>
uint16_t syncPhaseAcc;
uint16_t syncPhaseInc;
uint16_t grainPhaseAcc;
uint16_t grainPhaseInc;
uint16_t grainAmp;
uint8_t grainDecay;
uint16_t grain2PhaseAcc;
uint16_t grain2PhaseInc;
uint16_t grain2Amp;
uint8_t grain2Decay;
// Map Analogue channels
//Grain 1
#define GRAIN_FREQ_CONTROL (0)
#define GRAIN_DECAY_CONTROL (1)
//Grain 2
#define GRAIN2_FREQ_CONTROL (2)
#define GRAIN2_DECAY_CONTROL (3)
//Master
#define SYNC_CONTROL (4)
//Randomness amt
#define RANDOM_CONTROL (5)
//ON-OFF
#define FREEZE (2)
// Changing these will also requires rewriting audioOn()
#if defined(__AVR_ATmega8__)
//
// On old ATmega8 boards.
// Output is on pin 11
//
#define LED_PIN LED_BUILTIN
#define LED_PORT PORTB
#define LED_BIT 5
#define PWM_PIN 11
#define PWM_VALUE OCR2
#define PWM_INTERRUPT TIMER2_OVF_vect
#elif defined(__AVR_ATmega1280__)
//
// On the Arduino Mega
// Output is on pin 3
//
#define LED_PIN 13
#define LED_PORT PORTB
#define LED_BIT 7
#define PWM_PIN 3
#define PWM_VALUE OCR3C
#define PWM_INTERRUPT TIMER3_OVF_vect
#else
//
// For modern ATmega168 and ATmega328 boards
// Output is on pin 3
//
#define PWM_PIN 3
#define PWM_VALUE OCR2B
#define LED_PIN 13
#define LED_PORT PORTB
#define LED_BIT 5
#define PWM_INTERRUPT TIMER2_OVF_vect
#endif
int buttonState; // the current reading from the input pin
int lastButtonState = LOW; // the previous reading from the input pin
// the following variables are unsigned longs because the time, measured in
// milliseconds, will quickly become a bigger number than can be stored in an int.
unsigned long lastDebounceTime = 0; // the last time the output pin was toggled
unsigned long debounceDelay = 50; // the debounce time; increase if the output flickers
// Smooth logarithmic mapping
//
uint16_t antilogTable[] = {
64830, 64132, 63441, 62757, 62081, 61413, 60751, 60097, 59449, 58809, 58176, 57549, 56929, 56316, 55709, 55109,
54515, 53928, 53347, 52773, 52204, 51642, 51085, 50535, 49991, 49452, 48920, 48393, 47871, 47356, 46846, 46341,
45842, 45348, 44859, 44376, 43898, 43425, 42958, 42495, 42037, 41584, 41136, 40693, 40255, 39821, 39392, 38968,
38548, 38133, 37722, 37316, 36914, 36516, 36123, 35734, 35349, 34968, 34591, 34219, 33850, 33486, 33125, 32768
};
uint16_t mapPhaseInc(uint16_t input) {
return (antilogTable[input & 0x3f]) >> (input >> 6);
}
// Stepped chromatic mapping
//
uint16_t midiTable[] = {
17, 18, 19, 20, 22, 23, 24, 26, 27, 29, 31, 32, 34, 36, 38, 41, 43, 46, 48, 51, 54, 58, 61, 65, 69, 73,
77, 82, 86, 92, 97, 103, 109, 115, 122, 129, 137, 145, 154, 163, 173, 183, 194, 206, 218, 231,
244, 259, 274, 291, 308, 326, 346, 366, 388, 411, 435, 461, 489, 518, 549, 581, 616, 652, 691,
732, 776, 822, 871, 923, 978, 1036, 1097, 1163, 1232, 1305, 1383, 1465, 1552, 1644, 1742,
1845, 1955, 2071, 2195, 2325, 2463, 2610, 2765, 2930, 3104, 3288, 3484, 3691, 3910, 4143,
4389, 4650, 4927, 5220, 5530, 5859, 6207, 6577, 6968, 7382, 7821, 8286, 8779, 9301, 9854,
10440, 11060, 11718, 12415, 13153, 13935, 14764, 15642, 16572, 17557, 18601, 19708, 20879,
22121, 23436, 24830, 26306
};
uint16_t mapMidi(uint16_t input) {
return (midiTable[(1023 - input) >> 3]);
}
// Stepped Pentatonic mapping
//
uint16_t pentatonicTable[54] = {
0, 19, 22, 26, 29, 32, 38, 43, 51, 58, 65, 77, 86, 103, 115, 129, 154, 173, 206, 231, 259, 308, 346,
411, 461, 518, 616, 691, 822, 923, 1036, 1232, 1383, 1644, 1845, 2071, 2463, 2765, 3288,
3691, 4143, 4927, 5530, 6577, 7382, 8286, 9854, 11060, 13153, 14764, 16572, 19708, 22121, 26306
};
uint16_t mapPentatonic(uint16_t input) {
uint8_t value = (1023 - input) / (1024 / 53);
return (pentatonicTable[value]);
}
long random_amt = 0;
void audioOn() {
#if defined(__AVR_ATmega8__)
// ATmega8 has different registers
TCCR2 = _BV(WGM20) | _BV(COM21) | _BV(CS20);
TIMSK = _BV(TOIE2);
#elif defined(__AVR_ATmega1280__)
TCCR3A = _BV(COM3C1) | _BV(WGM30);
TCCR3B = _BV(CS30);
TIMSK3 = _BV(TOIE3);
#else
// Set up PWM to 31.25kHz, phase accurate
TCCR2A = _BV(COM2B1) | _BV(WGM20);
TCCR2B = _BV(CS20);
TIMSK2 = _BV(TOIE2);
#endif
}
void setup() {
pinMode(FREEZE, INPUT_PULLUP);
// digitalWrite(FREEZE, HIGH);
pinMode(PWM_PIN, OUTPUT);
audioOn();
pinMode(LED_PIN, OUTPUT);
}
void loop() {
if (digitalRead(FREEZE) == HIGH) {
random_amt = map(analogRead(RANDOM_CONTROL), 0, 1023, 100, 0);
// The loop is pretty simple - it just updates the parameters for the oscillators.
//
// Avoid using any functions that make extensive use of interrupts, or turn interrupts off.
// They will cause clicks and poops in the audio.
// Smooth frequency mapping
syncPhaseInc = mapPhaseInc(analogRead(SYNC_CONTROL)) / (10 + random(0, random_amt));
delay(random(0, random_amt));
grainPhaseInc = mapPhaseInc(analogRead(GRAIN_FREQ_CONTROL)) / 2;
delay(random(0, random_amt));
grainDecay = analogRead(GRAIN_DECAY_CONTROL) / 8;
// delay(random(200, 500));
grain2PhaseInc = mapPhaseInc(analogRead(GRAIN2_FREQ_CONTROL)) / 2;
// delay(random(10, 80));
grain2Decay = analogRead(GRAIN2_DECAY_CONTROL) / 3;
// delay(random(200, 500));
}
}
SIGNAL(PWM_INTERRUPT)
{
uint8_t value;
uint16_t output;
syncPhaseAcc += syncPhaseInc;
if (syncPhaseAcc < syncPhaseInc) {
// Time to start the next grain
grainPhaseAcc = 0;
grainAmp = 0x7fff;
grain2PhaseAcc = 0;
grain2Amp = 0x7fff;
LED_PORT ^= 1 << LED_BIT; // Faster than using digitalWrite
}
// Increment the phase of the grain oscillators
grainPhaseAcc += grainPhaseInc;
grain2PhaseAcc += grain2PhaseInc;
// Convert phase into a triangle wave
value = (grainPhaseAcc >> 7) & 0xff;
if (grainPhaseAcc & 0x8000) value = ~value;
// Multiply by current grain amplitude to get sample
output = value * (grainAmp >> 8);
// Repeat for second grain
value = (grain2PhaseAcc >> 7) & 0xff;
if (grain2PhaseAcc & 0x8000) value = ~value;
output += value * (grain2Amp >> 8);
// Make the grain amplitudes decay by a factor every sample (exponential decay)
grainAmp -= (grainAmp >> 8) * grainDecay;
grain2Amp -= (grain2Amp >> 8) * grain2Decay;
// Scale output to the available range, clipping if necessary
output >>= 9;
if (output > 255) output = 255;
// Output to PWM (this is faster than using analogWrite)
PWM_VALUE = output;
}