-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvignette.html
832 lines (797 loc) · 455 KB
/
vignette.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Ian D. Buller, Ph.D., M.A. (Github: @idblr)" />
<meta name="date" content="2023-02-01" />
<title>gateR: Flow/Mass Cytometry Gating via Spatial Kernel Density Estimation</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">gateR: Flow/Mass Cytometry Gating via
Spatial Kernel Density Estimation</h1>
<h4 class="author">Ian D. Buller, Ph.D., M.A. (Github: <span class="citation">@idblr</span>)</h4>
<h4 class="date">2023-02-01</h4>
<p>The gateR package is a suite of R functions to identify significant
spatial clustering of mass and flow cytometry data used in immunological
investigations. The gateR package can be used for a panel of all surface
markers or a mixture of surface markers and functional readouts. The
gateR package performs a gating technique that estimates statistically
significant marker combination values within which one immunologically
distinctive group (i.e., disease case) is more associated than another
group (i.e., healthy control), successively, using various combinations
(i.e., “gates”) of markers to examine features of cells that may be
different between groups. For a two-group comparison, the gateR package
uses the spatial relative risk function estimated using the <a href="https://CRAN.R-project.org/package=sparr">sparr</a> package. The
gates are conducted in two-dimensional space comprised of two
markers.</p>
<p>Examples of a single condition with two groups:</p>
<ol style="list-style-type: decimal">
<li>Disease case vs. Healthy control</li>
<li>Time 2 vs. Time 1 (baseline)</li>
</ol>
<p>For a two-group comparison of two conditions, we estimate two
relative risk surfaces for one condition and then a ratio of the
relative risks. For example:</p>
<ol style="list-style-type: decimal">
<li>Estimate a relative risk surface for:
<ol style="list-style-type: decimal">
<li>Condition 2B vs. Condition 2A</li>
<li>Condition 1B vs. Condition 1A</li>
</ol></li>
<li>Estimate the relative risk surface for the ratio:</li>
</ol>
<p><span class="math display">\[\frac{(\frac{Condition2B}{Condition2A})}{(\frac{Condition1B}{Condition1A})}\]</span></p>
<p>Within areas where the relative risk exceeds an asymptotic normal
assumption, the gateR package has the functionality to examine the
features of these cells.</p>
<p>This vignette implements the gateR package using a randomly generated
data set. Please see the README.md file within the <a href="https://github.com/lance-waller-lab/gateR">gateR GitHub
repository</a> for an example using publicly available flow cytometry
data from the <a href="https://bioconductor.org/packages/release/data/experiment/html/flowWorkspaceData.html">flowWorkspaceData</a>
package available via <a href="https://bioconductor.org/">Bioconductor</a>. Here, we generate
data with two conditions, four markers, and two additional features.</p>
<p>We start with the necessary packages and seed for the vignette.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a> loadedPackages <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"gateR"</span>, <span class="st">"graphics"</span>, <span class="st">"stats"</span>, <span class="st">"tibble"</span>, <span class="st">"utils"</span>)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">invisible</span>(<span class="fu">lapply</span>(loadedPackages, library, <span class="at">character.only =</span> <span class="cn">TRUE</span>))</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">set.seed</span>(<span class="dv">1234</span>) <span class="co"># for reproducibility</span></span></code></pre></div>
<div id="generate-random-toy-data" class="section level3">
<h3>Generate random toy data</h3>
<p>A unique function randomly generates multivariate normal (MVN) data
around a central point. Parameters include the centroid coordinates
(<code>centre</code>), the number of observations to generate
(<code>ncell</code>), and the standard deviation of the normal
distribution (<code>scalar</code>).</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a> rand_mvn <span class="ot"><-</span> <span class="cf">function</span>(centre, ncell, scalar) {</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a> x0 <span class="ot"><-</span> centre[<span class="dv">1</span>] </span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a> y0 <span class="ot"><-</span> centre[<span class="dv">2</span>]</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a> x1 <span class="ot"><-</span> <span class="fu">rep</span>(x0, ncell)</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a> y1 <span class="ot"><-</span> <span class="fu">rep</span>(y0, ncell)</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a> x2 <span class="ot"><-</span> x1 <span class="sc">+</span> stats<span class="sc">::</span><span class="fu">rnorm</span>(ncell, <span class="dv">0</span>, scalar) </span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a> y2 <span class="ot"><-</span> y1 <span class="sc">+</span> stats<span class="sc">::</span><span class="fu">rnorm</span>(ncell, <span class="dv">0</span>, scalar) </span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a> x <span class="ot"><-</span> <span class="fu">cbind</span>(x2, y2)</span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a> }</span></code></pre></div>
<div id="gate-1-marker-1-and-marker-2" class="section level4">
<h4>Gate 1: Marker 1 and Marker 2</h4>
<p>At Condition 1, we generate 100,000 cases and 100,000 controls
(<code>ncell = 100000</code>) randomly MVN with a case centroid at
(<code>0.55, 0.55</code>) and a control centroid at
(<code>0.40, 0.40</code>) within a unit square window
<code>(0, 1)</code>, and cases have a more focal cluster
(<code>scalar = 0.05</code>) than controls
(<code>scalar = 0.15</code>).</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Initial parameters</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a> ncell <span class="ot"><-</span> <span class="dv">100000</span> <span class="co"># number of observations per group per condition</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a> c1_cas_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.55</span>, <span class="fl">0.55</span>)</span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a> c1_con_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.40</span>, <span class="fl">0.40</span>)</span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co"># V1 and V2 at Condition 1</span></span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a> c1_cas <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c1_cas_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.05</span>)</span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a> c1_con <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c1_con_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.15</span>)</span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(c1_con,</span>
<span id="cb3-10"><a href="#cb3-10" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>,</span>
<span id="cb3-11"><a href="#cb3-11" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb3-12"><a href="#cb3-12" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb3-13"><a href="#cb3-13" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Gate 1, Condition 1"</span>,</span>
<span id="cb3-14"><a href="#cb3-14" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> <span class="st">"V1"</span>,</span>
<span id="cb3-15"><a href="#cb3-15" aria-hidden="true" tabindex="-1"></a> <span class="at">ylab =</span> <span class="st">"V2"</span>)</span>
<span id="cb3-16"><a href="#cb3-16" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">points</span>(c1_cas, <span class="at">col =</span> <span class="st">"orangered4"</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>At Condition 2, we generate 100,000 cases and 100,000 controls
(<code>ncell = 100000</code>) randomly MVN with a case centroid at
(<code>0.45, 0.45</code>) and a control centroid at
(<code>0.40, 0.40</code>) within a unit square window
<code>(0, 1)</code>, and cases have a more focal cluster
(<code>scalar = 0.05</code>) than controls
(<code>scalar = 0.10</code>).</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Initial parameters</span></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a> c2_cas_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.45</span>, <span class="fl">0.45</span>)</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a> c2_con_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.40</span>, <span class="fl">0.40</span>)</span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co"># V1 and V2 at Condition 2</span></span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a> c2_cas <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c2_cas_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.05</span>)</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a> c2_con <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c2_con_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.10</span>)</span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(c2_con,</span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"cornflowerblue"</span>,</span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb4-11"><a href="#cb4-11" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb4-12"><a href="#cb4-12" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Gate 1, Condition 2"</span>,</span>
<span id="cb4-13"><a href="#cb4-13" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> <span class="st">"V1"</span>,</span>
<span id="cb4-14"><a href="#cb4-14" aria-hidden="true" tabindex="-1"></a> <span class="at">ylab =</span> <span class="st">"V2"</span>)</span>
<span id="cb4-15"><a href="#cb4-15" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">points</span>(c2_cas, <span class="at">col =</span> <span class="st">"orangered1"</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># compile data</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a> df_full <span class="ot"><-</span> tibble<span class="sc">::</span><span class="fu">tibble</span>(<span class="st">"id"</span> <span class="ot">=</span> <span class="fu">seq</span>(<span class="dv">1</span>, ncell <span class="sc">*</span> <span class="dv">2</span> <span class="sc">*</span> <span class="dv">2</span>, <span class="dv">1</span>),</span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a> <span class="st">"group"</span> <span class="ot">=</span> <span class="fu">factor</span>(<span class="fu">c</span>(<span class="fu">rep</span>(<span class="st">"case"</span>, ncell <span class="sc">*</span> <span class="dv">2</span>),</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">rep</span>(<span class="st">"control"</span>, ncell <span class="sc">*</span> <span class="dv">2</span>))),</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a> <span class="st">"condition"</span> <span class="ot">=</span> <span class="fu">factor</span>(<span class="fu">c</span>(<span class="fu">rep</span>(<span class="st">"2"</span>, ncell), <span class="fu">rep</span>(<span class="st">"1"</span>, ncell),</span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">rep</span>(<span class="st">"2"</span>, ncell), <span class="fu">rep</span>(<span class="st">"1"</span>, ncell))),</span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a> <span class="st">"V1"</span> <span class="ot">=</span> <span class="fu">c</span>(c2_cas[ , <span class="dv">1</span>], c1_cas[ , <span class="dv">1</span>], c2_con[ , <span class="dv">1</span>], c1_con[ , <span class="dv">1</span>]),</span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a> <span class="st">"V2"</span> <span class="ot">=</span> <span class="fu">c</span>(c2_cas[ , <span class="dv">2</span>], c1_cas[ , <span class="dv">2</span>], c2_con[ , <span class="dv">2</span>], c1_con[ , <span class="dv">2</span>]))</span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a> <span class="fu">rm</span>(c2_cas, c1_cas, c2_con, c1_con) <span class="co"># conserve memory</span></span></code></pre></div>
</div>
<div id="gate-2-marker-3-and-marker-4" class="section level4">
<h4>Gate 2: Marker 3 and Marker 4</h4>
<p>At Condition 1, we generate 100,000 cases and 100,000 controls
(<code>ncell = 100000</code>) randomly MVN with a case centroid at
(<code>0.55, 0.55</code>) and a control centroid at
(<code>0.50, 0.50</code>) within a unit square window
<code>(0, 05)</code>, but both have the same amount of spread
(<code>scalar = 0.10</code>).</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Initial parameters</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a> c1_cas_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.55</span>, <span class="fl">0.55</span>)</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a> c1_con_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.50</span>, <span class="fl">0.50</span>)</span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="co"># V3 and V4 at Condition 1</span></span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a> c1_cas <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c1_cas_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.05</span>)</span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a> c1_con <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c1_con_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.10</span>)</span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(c1_con,</span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>,</span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Gate 2, Condition 1"</span>,</span>
<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> <span class="st">"V3"</span>,</span>
<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a> <span class="at">ylab =</span> <span class="st">"V4"</span>)</span>
<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">points</span>(c1_cas, <span class="at">col =</span> <span class="st">"orangered4"</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>At Condition 2, we generate 100,000 cases and 100,000 controls
(<code>ncell = 100000</code>) randomly with a case centroid at
(<code>0.65, 0.65</code>) and control a centroid at
(<code>0.50, 0.50</code>) within a unit square window
<code>(0, 1)</code>, and cases have a more focal cluster
(<code>scalar = 0.05</code>) than controls
(<code>scalar = 0.10</code>).</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Initial parameters</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a> c2_cas_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.65</span>, <span class="fl">0.65</span>)</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a> c2_con_center <span class="ot"><-</span> <span class="fu">c</span>(<span class="fl">0.50</span>, <span class="fl">0.50</span>)</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co"># V3 and V4 at Condition 2</span></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a> c2_cas <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c2_cas_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.05</span>)</span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a> c2_con <span class="ot"><-</span> <span class="fu">rand_mvn</span>(<span class="at">centre =</span> c2_con_center, <span class="at">ncell =</span> ncell, <span class="at">scalar =</span> <span class="fl">0.10</span>)</span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(c2_con,</span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"cornflowerblue"</span>,</span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>),</span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Gate 2, Condition 2"</span>,</span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> <span class="st">"V3"</span>,</span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a> <span class="at">ylab =</span> <span class="st">"V4"</span>)</span>
<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">points</span>(c2_cas, <span class="at">col =</span> <span class="st">"orangered1"</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>Compile the toy data into a data frame</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a> df_full<span class="sc">$</span>V3 <span class="ot"><-</span> <span class="fu">c</span>(c2_cas[ , <span class="dv">1</span>], c1_cas[ , <span class="dv">1</span>], c2_con[ , <span class="dv">1</span>], c1_con[ , <span class="dv">1</span>])</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a> df_full<span class="sc">$</span>V4 <span class="ot"><-</span> <span class="fu">c</span>(c2_cas[ , <span class="dv">2</span>], c1_cas[ , <span class="dv">2</span>], c2_con[ , <span class="dv">2</span>], c1_con[ , <span class="dv">2</span>])</span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">rm</span>(c2_cas, c1_cas, c2_con, c1_con) <span class="co"># conserve memory</span></span></code></pre></div>
<p>Generate random values for two example cytokines and append to the
data frame.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Two Cytokines</span></span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a> Z1 <span class="ot"><-</span> stats<span class="sc">::</span><span class="fu">rchisq</span>(ncell <span class="sc">*</span> <span class="dv">4</span>, <span class="at">df =</span> <span class="dv">5</span>) <span class="co"># Random Chi-square distribution</span></span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a> Z2 <span class="ot"><-</span> stats<span class="sc">::</span><span class="fu">rnorm</span>(ncell <span class="sc">*</span> <span class="dv">4</span>, <span class="dv">0</span>, <span class="dv">1</span>) <span class="co"># Random Gaussian distribution</span></span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Append to data.frame</span></span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a> df_full<span class="sc">$</span>Z1 <span class="ot"><-</span> Z1</span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a> df_full<span class="sc">$</span>Z2 <span class="ot"><-</span> Z2</span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">rm</span>(Z1, Z2) <span class="co"># conserve memory</span></span>
<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Visualize histograms by the two group conditions</span></span>
<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">2</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z1[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span> </span>
<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"1"</span>]),</span>
<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of Cases at Condition 1"</span>)</span>
<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z1[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span> </span>
<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of Cases at Condition 2"</span>)</span>
<span id="cb9-16"><a href="#cb9-16" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z1[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span></span>
<span id="cb9-17"><a href="#cb9-17" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"1"</span>]),</span>
<span id="cb9-18"><a href="#cb9-18" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of Controls at Condition 1"</span>)</span>
<span id="cb9-19"><a href="#cb9-19" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z1[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span></span>
<span id="cb9-20"><a href="#cb9-20" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb9-21"><a href="#cb9-21" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of Controls at Condition 2"</span>)</span>
<span id="cb9-22"><a href="#cb9-22" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z2[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span></span>
<span id="cb9-23"><a href="#cb9-23" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"1"</span>]),</span>
<span id="cb9-24"><a href="#cb9-24" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of Cases at Condition 1"</span>)</span>
<span id="cb9-25"><a href="#cb9-25" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z2[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span> </span>
<span id="cb9-26"><a href="#cb9-26" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb9-27"><a href="#cb9-27" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of Cases at Condition 2"</span>)</span>
<span id="cb9-28"><a href="#cb9-28" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z2[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span> </span>
<span id="cb9-29"><a href="#cb9-29" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"1"</span>]),</span>
<span id="cb9-30"><a href="#cb9-30" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of Controls at Condition 1"</span>)</span>
<span id="cb9-31"><a href="#cb9-31" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z2[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span> </span>
<span id="cb9-32"><a href="#cb9-32" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb9-33"><a href="#cb9-33" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of Controls at Condition 2"</span>)</span></code></pre></div>
<p><img src="" /><img src="" /></p>
<p>The toy data frame has nine columns (id, groups, markers, and
cytokines).</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a> utils<span class="sc">::</span><span class="fu">head</span>(df_full)</span></code></pre></div>
<pre><code>## # A tibble: 6 × 9
## id group condition V1 V2 V3 V4 Z1 Z2
## <dbl> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 case 2 0.491 0.402 0.677 0.586 4.35 -0.488
## 2 2 case 2 0.407 0.493 0.714 0.698 8.61 0.279
## 3 3 case 2 0.508 0.409 0.547 0.644 6.79 -0.786
## 4 4 case 2 0.423 0.480 0.657 0.656 1.04 -0.552
## 5 5 case 2 0.367 0.420 0.635 0.637 4.10 0.239
## 6 6 case 2 0.499 0.405 0.547 0.656 6.99 0.0472</code></pre>
</div>
</div>
<div id="for-two-conditions" class="section level3">
<h3>For two conditions</h3>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Initial parameters</span></span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a> alpha <span class="ot"><-</span> <span class="fl">0.05</span></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a> vars <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"V1"</span>, <span class="st">"V2"</span>, <span class="st">"V3"</span>, <span class="st">"V4"</span>)</span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> p_correct <span class="ot"><-</span> <span class="st">"correlated Bonferroni"</span></span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">set.seed</span>(<span class="dv">1234</span>) <span class="co"># for reproducibility</span></span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a> df_full <span class="ot"><-</span> <span class="fu">as.data.frame</span>(df_full)</span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Gates 1 and 2</span></span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a> start_time <span class="ot"><-</span> <span class="fu">Sys.time</span>() <span class="co"># record start time</span></span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a> out_gate <span class="ot"><-</span> gateR<span class="sc">::</span><span class="fu">gating</span>(<span class="at">dat =</span> df_full,</span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a> <span class="at">vars =</span> vars,</span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a> <span class="at">n_condition =</span> <span class="dv">2</span>,</span>
<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a> <span class="at">plot_gate =</span> <span class="cn">TRUE</span>,</span>
<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha =</span> alpha,</span>
<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a> <span class="at">p_correct =</span> p_correct,</span>
<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a> <span class="at">c1n =</span> <span class="st">"case"</span>, <span class="co"># level "case" as the numerator of first condition</span></span>
<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a> <span class="at">c2n =</span> <span class="st">"2"</span>) <span class="co"># level "2" as the numerator of second condition</span></span>
<span id="cb12-18"><a href="#cb12-18" aria-hidden="true" tabindex="-1"></a> end_time <span class="ot"><-</span> <span class="fu">Sys.time</span>() <span class="co"># record end time</span></span>
<span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a> total_time <span class="ot"><-</span> end_time <span class="sc">-</span> start_time <span class="co"># calculate duration of gating() example</span></span></code></pre></div>
<p><img src="" /><img src="" /></p>
<p>The gating process took about 19.1 seconds on a machine with the
features listed at the end of the vignette (4 variables, 2 gates, 2
cytokines, 400,000 observations). The corrected significance level in
the first gate was . The histograms for the two cytokines are the same
as above.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 1</span></span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z1[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span></span>
<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> out_gate<span class="sc">$</span>obs<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"red"</span>, <span class="at">main =</span> <span class="st">"Cytokine 1 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z1[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span> </span>
<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> out_gate<span class="sc">$</span>obs<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>,</span>
<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of controls</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 2</span></span>
<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z2[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span></span>
<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> out_gate<span class="sc">$</span>obs<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"red"</span>,</span>
<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span>
<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z2[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span> </span>
<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> out_gate<span class="sc">$</span>obs<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>,</span>
<span id="cb13-25"><a href="#cb13-25" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of controls</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb13-26"><a href="#cb13-26" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb13-27"><a href="#cb13-27" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span></code></pre></div>
<p><img src="" /><img src="" /></p>
<p>Compare histograms before and after gating. Gating reduced the
overall sample size of observations from 400,000 (cases & controls
and Condition 1 & Condition 2) to 73,316 observations (cases &
controls and Condition 1 & Condition 2).</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 1</span></span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z1[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of cases</span><span class="sc">\n</span><span class="st">pre-gating"</span>,</span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z1[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span></span>
<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> out_gate<span class="sc">$</span>obs<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 2</span></span>
<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z2[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span> </span>
<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of cases</span><span class="sc">\n</span><span class="st">pre-gating"</span>,</span>
<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span>
<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z2[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span> </span>
<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a> <span class="sc">&</span> out_gate<span class="sc">$</span>obs<span class="sc">$</span>condition <span class="sc">==</span> <span class="st">"2"</span>]),</span>
<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>, </span>
<span id="cb14-30"><a href="#cb14-30" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb14-31"><a href="#cb14-31" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb14-32"><a href="#cb14-32" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span></code></pre></div>
<p><img src="" /><img src="" /></p>
</div>
<div id="for-a-one-condition-using-only-condition-1" class="section level3">
<h3>For a one condition (using only Condition 1)</h3>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Data subset, only c1</span></span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a> df_sub <span class="ot"><-</span> df_full[df_full<span class="sc">$</span>condition <span class="sc">==</span> <span class="dv">1</span>, ] <span class="co"># For only condition condition = 1</span></span>
<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Initial parameters</span></span>
<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a> alpha <span class="ot"><-</span> <span class="fl">0.05</span></span>
<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a> vars <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"V1"</span>, <span class="st">"V2"</span>, <span class="st">"V3"</span>, <span class="st">"V4"</span>)</span>
<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a> p_correct <span class="ot"><-</span> <span class="st">"correlated Bonferroni"</span></span>
<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">set.seed</span>(<span class="dv">1234</span>) <span class="co"># for reproducibility</span></span>
<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Gates 1 and 2</span></span>
<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a> start_time <span class="ot"><-</span> <span class="fu">Sys.time</span>() <span class="co"># record start time</span></span>
<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a> out_gate <span class="ot"><-</span> gateR<span class="sc">::</span><span class="fu">gating</span>(<span class="at">dat =</span> df_sub,</span>
<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a> <span class="at">vars =</span> vars,</span>
<span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a> <span class="at">plot_gate =</span> <span class="cn">TRUE</span>,</span>
<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a> <span class="at">n_condition =</span> <span class="dv">1</span>,</span>
<span id="cb15-16"><a href="#cb15-16" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha =</span> alpha,</span>
<span id="cb15-17"><a href="#cb15-17" aria-hidden="true" tabindex="-1"></a> <span class="at">p_correct =</span> p_correct,</span>
<span id="cb15-18"><a href="#cb15-18" aria-hidden="true" tabindex="-1"></a> <span class="at">c1n =</span> <span class="st">"case"</span>) <span class="co"># level "case" as the numerator of first condition</span></span>
<span id="cb15-19"><a href="#cb15-19" aria-hidden="true" tabindex="-1"></a> end_time <span class="ot"><-</span> <span class="fu">Sys.time</span>() <span class="co"># record end time</span></span>
<span id="cb15-20"><a href="#cb15-20" aria-hidden="true" tabindex="-1"></a> total_time <span class="ot"><-</span> end_time <span class="sc">-</span> start_time <span class="co"># calculate duration of gating() example</span></span></code></pre></div>
<p><img src="" /><img src="" /></p>
<p>The gating process took about 22.8 seconds on a machine with the
features listed at the end of the vignette (4 variables, 2 gates, 2
cytokines, 200,000 observations). The corrected significance level in
the first gate was . The histograms for the two cytokines are the same
as above.</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 1</span></span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z1[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span>]),</span>
<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"red"</span>,</span>
<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z1[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span>]),</span>
<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>,</span>
<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of controls</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 2</span></span>
<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z2[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span>]),</span>
<span id="cb16-16"><a href="#cb16-16" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"red"</span>,</span>
<span id="cb16-17"><a href="#cb16-17" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb16-18"><a href="#cb16-18" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb16-19"><a href="#cb16-19" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span>
<span id="cb16-20"><a href="#cb16-20" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z2[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"control"</span>]),</span>
<span id="cb16-21"><a href="#cb16-21" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"blue"</span>,</span>
<span id="cb16-22"><a href="#cb16-22" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of controls</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb16-23"><a href="#cb16-23" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb16-24"><a href="#cb16-24" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span></code></pre></div>
<p><img src="" /><img src="" /></p>
<p>Compare histograms before and after gating. Gating reduced the
overall sample size of observations from 200,000 (cases & controls)
to 86,167 observations (cases & controls).</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 1</span></span>
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z1[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span>]),</span>
<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of cases</span><span class="sc">\n</span><span class="st">pre-gating"</span>,</span>
<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z1[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span>]),</span>
<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 1 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">30</span>),</span>
<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.2</span>))</span>
<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot of Cytokine 2</span></span>
<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">pty =</span> <span class="st">"s"</span>)</span>
<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(df_full<span class="sc">$</span>Z2[df_full<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span>]),</span>
<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb17-19"><a href="#cb17-19" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb17-20"><a href="#cb17-20" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of cases</span><span class="sc">\n</span><span class="st">pre-gating"</span>,</span>
<span id="cb17-21"><a href="#cb17-21" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb17-22"><a href="#cb17-22" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span>
<span id="cb17-23"><a href="#cb17-23" aria-hidden="true" tabindex="-1"></a> graphics<span class="sc">::</span><span class="fu">plot</span>(stats<span class="sc">::</span><span class="fu">density</span>(out_gate<span class="sc">$</span>obs<span class="sc">$</span>Z2[out_gate<span class="sc">$</span>obs<span class="sc">$</span>group <span class="sc">==</span> <span class="st">"case"</span>]),</span>
<span id="cb17-24"><a href="#cb17-24" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> <span class="st">"black"</span>,</span>
<span id="cb17-25"><a href="#cb17-25" aria-hidden="true" tabindex="-1"></a> <span class="at">lty =</span> <span class="dv">1</span>,</span>
<span id="cb17-26"><a href="#cb17-26" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Cytokine 2 of cases</span><span class="sc">\n</span><span class="st">post-gating"</span>,</span>
<span id="cb17-27"><a href="#cb17-27" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">5</span>),</span>
<span id="cb17-28"><a href="#cb17-28" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>))</span></code></pre></div>
<p><img src="" /><img src="" /></p>
</div>
<div id="current-limitations" class="section level3">
<h3>Current limitations</h3>
<ol style="list-style-type: decimal">
<li>Extracts observations at <em>all</em> significant clusters (either
case or controls), and there is currently no functionality to select
cells within a specific (set of) cluster(s) for the next gate.</li>
<li>Only two dimensions (i.e., markers) per gate because the spatial
relative risk function is a two-dimensional spatial statistic.</li>
<li>Only two-group comparisons (e.g., case vs. control) per gate because
the spatial relative risk function is a ratio by nature.</li>
<li>Only comparisons of one condition or two conditions are
possible.</li>
<li>Large computational expense (i.e., run-time) to calculate the
correlated Bonferroni correction.</li>
<li>A large sample size of observations (i.e., cells) may overload the
gateR process. We are evaluating this potential limitation and
developing a possible solution (e.g., randomly subsetting the data to
estimate the clusters at each gate).</li>
</ol>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">sessionInfo</span>()</span></code></pre></div>
<pre><code>## R version 4.2.1 (2022-06-23 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] tibble_3.1.8 gateR_0.1.13
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.10 lattice_0.20-45 deldir_1.0-6
## [4] foreach_1.5.2 digest_0.6.31 utf8_1.2.2
## [7] R6_2.5.1 evaluate_0.20 spam_2.9-1
## [10] highr_0.10 ggplot2_3.4.0 tensor_1.5
## [13] pillar_1.8.1 rlang_1.0.6 misc3d_0.9-1
## [16] rstudioapi_0.14 jquerylib_0.1.4 rpart_4.1.19
## [19] Matrix_1.4-1 goftest_1.2-3 rmarkdown_2.20
## [22] splines_4.2.1 spatstat.explore_3.0-6 polyclip_1.10-4
## [25] munsell_0.5.0 spatstat.data_3.0-0 compiler_4.2.1
## [28] xfun_0.36 pkgconfig_2.0.3 mgcv_1.8-41
## [31] tcltk_4.2.1 htmltools_0.5.4 tidyselect_1.2.0
## [34] spatstat.random_3.1-3 gridExtra_2.3 codetools_0.2-18
## [37] fansi_1.0.4 viridisLite_0.4.1 dplyr_1.1.0
## [40] grid_4.2.1 nlme_3.1-157 jsonlite_1.8.4
## [43] gtable_0.3.1 lifecycle_1.0.3 magrittr_2.0.3
## [46] scales_1.2.1 cli_3.6.0 cachem_1.0.6
## [49] viridis_0.6.2 doParallel_1.0.17 fastmatrix_0.4-1245
## [52] spatstat_3.0-3 spatstat.linnet_3.0-4 bslib_0.4.2
## [55] spatstat.utils_3.0-1 generics_0.1.3 vctrs_0.5.2
## [58] iterators_1.0.14 tools_4.2.1 Cairo_1.6-0
## [61] glue_1.6.2 maps_3.4.1 fields_14.1
## [64] parallel_4.2.1 spatstat.model_3.1-2 abind_1.4-5
## [67] fastmap_1.1.0 yaml_2.3.6 terra_1.7-3
## [70] spatstat.sparse_3.0-0 colorspace_2.1-0 SpatialPack_0.4
## [73] dotCall64_1.0-2 spatstat.geom_3.0-6 sparr_2.2-17
## [76] knitr_1.42 sass_0.4.4</code></pre>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>