-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
308 lines (258 loc) · 11.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import cv2
import time
import numpy as np
def xywh2xyxy(x):
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
return y
def clip_boxes(boxes, shape):
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
boxes[..., [0, 2]] -= pad[0] # x padding
boxes[..., [1, 3]] -= pad[1] # y padding
boxes[..., :4] /= gain
clip_boxes(boxes, img0_shape)
return boxes
def crop_mask(masks, boxes):
n, h, w = masks.shape
x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, axis=1)
r = np.arange(w, dtype=np.float32)[None, None, :] # rows shape(1,w,1)
c = np.arange(h, dtype=np.float32)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def sigmoid(x):
return 1.0/(1+np.exp(-x))
def process_mask(protos, masks_in, bboxes, shape):
c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = sigmoid(masks_in @ protos.reshape(c, -1)).reshape(-1, mh, mw) # CHW 【lulu】
downsampled_bboxes = bboxes.copy()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = crop_mask(masks, downsampled_bboxes) # CHW
masks = np.transpose(masks, [1,2,0])
# masks = cv2.resize(masks, (shape[1], shape[0]), interpolation=cv2.INTER_NEAREST)
masks = cv2.resize(masks, (shape[1], shape[0]), interpolation=cv2.INTER_LINEAR)
if masks.ndim == 3:
masks = np.transpose(masks, [2,0,1])
return np.where(masks>0.5,masks,0)
def nms(bboxes, scores, threshold=0.5):
x1 = bboxes[:, 0]
y1 = bboxes[:, 1]
x2 = bboxes[:, 2]
y2 = bboxes[:, 3]
areas = (x2 - x1) * (y2 - y1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if order.size == 1: break
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, (xx2 - xx1))
h = np.maximum(0.0, (yy2 - yy1))
inter = w * h
iou = inter / (areas[i] + areas[order[1:]] - inter)
ids = np.where(iou <= threshold)[0]
order = order[ids + 1]
return keep
def non_max_suppression(
prediction,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nc=0, # number of classes (optional)
):
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
#【lulu】prediction.shape[1]:box + cls + num_masks
bs = prediction.shape[0] # batch size
nc = nc or (prediction.shape[1] - 4) # number of classes
nm = prediction.shape[1] - nc - 4 # num_masks
mi = 4 + nc # mask start index
xc = np.max(prediction[:, 4:mi], axis=1) > conf_thres ## 【lulu】
# Settings
# min_wh = 2 # (pixels) minimum box width and height
max_wh = 7680 # (pixels) maximum box width and height
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
time_limit = 0.5 + 0.05 * bs # seconds to quit after
redundant = True # require redundant detections
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
merge = False # use merge-NMS
t = time.time()
output = [np.zeros((0,6 + nm))] * bs ## 【lulu】
for xi, x in enumerate(prediction): # image_3c index, image_3c inference
# Apply constraints
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = np.transpose(x,[1,0])[xc[xi]] ## 【lulu】
# If none remain process next image_3c
if not x.shape[0]: continue
# Detections matrix nx6 (xyxy, conf, cls)
box, cls, mask = np.split(x, [4, 4+nc], axis=1) ## 【lulu】
box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2)
j = np.argmax(cls, axis=1) ## 【lulu】
conf = cls[np.array(range(j.shape[0])), j].reshape(-1,1)
x = np.concatenate([box, conf, j.reshape(-1,1), mask], axis=1)[conf.reshape(-1,)>conf_thres]
# Check shape
n = x.shape[0] # number of boxes
if not n: continue
x = x[np.argsort(x[:, 4])[::-1][:max_nms]] # sort by confidence and remove excess boxes 【lulu】
# Batched NMS
c = x[:, 5:6] * max_wh # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = nms(boxes, scores, iou_thres) ## 【lulu】
i = i[:max_det] # limit detections
output[xi] = x[i]
if (time.time() - t) > time_limit:
# LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
break # time limit exceeded
return output
def make_anchors(feats_shape, strides, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points, stride_tensor = [], []
assert feats_shape is not None
dtype_ = np.float
for i, stride in enumerate(strides):
_, _, h, w = feats_shape[i]
sx = np.arange(w, dtype=dtype_) + grid_cell_offset # shift x
sy = np.arange(h, dtype=dtype_) + grid_cell_offset # shift y
sy, sx = np.meshgrid(sy, sx, indexing='ij')
anchor_points.append(np.stack((sx, sy), -1).reshape(-1, 2))
stride_tensor.append(np.full((h * w, 1), stride, dtype=dtype_))
return np.concatenate(anchor_points), np.concatenate(stride_tensor)
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
"""Transform distance(ltrb) to box(xywh or xyxy)."""
lt, rb = np.split(distance, 2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
if xywh:
c_xy = (x1y1 + x2y2) / 2
wh = x2y2 - x1y1
return np.concatenate((c_xy, wh), dim) # xywh bbox
return np.concatenate((x1y1, x2y2), dim) # xyxy bbox
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
def preprocess(image, input_height, input_width):
image_3c = image
# Convert the image_3c color space from BGR to RGB
image_3c = cv2.cvtColor(image_3c, cv2.COLOR_BGR2RGB)
# Resize the image_3c to match the input shape
image_3c, ratio, dwdh = letterbox(image_3c, new_shape=[input_height, input_width], auto=False)
# Normalize the image_3c data by dividing it by 255.0
image_4c = np.array(image_3c) / 255.0
# Transpose the image_3c to have the channel dimension as the first dimension
image_4c = np.transpose(image_4c, (2, 0, 1)) # Channel first
# Expand the dimensions of the image_3c data to match the expected input shape
image_4c = np.expand_dims(image_4c, axis=0).astype(np.float32)
image_4c = np.ascontiguousarray(image_4c) # contiguous
# Return the preprocessed image_3c data
return image_4c, image_3c
def postprocess(preds, img, orig_img, OBJ_THRESH, NMS_THRESH, classes=None):
p = non_max_suppression(preds[0],
OBJ_THRESH,
NMS_THRESH,
agnostic=False,
max_det=300,
nc=classes,
classes=None)
#print(p)
results = []
proto = preds[1]
for i, pred in enumerate(p):
shape = orig_img.shape
if not len(pred):
results.append([[], [], []]) # save empty boxes
continue
masks = process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:]) # HWC
pred[:, :4] = scale_boxes(img.shape[2:], pred[:, :4], shape).round()
results.append([pred[:, :6], masks, shape[:2]])
return results
def gen_color(class_num):
color_list = []
np.random.seed(1)
while 1:
a = list(map(int, np.random.choice(range(255),3)))
if(np.sum(a)==0): continue
color_list.append(a)
if len(color_list)==class_num: break
return color_list
def vis_result(image_3c, results, colorlist, CLASSES, result_path):
boxes, masks, shape = results
if masks.ndim == 2:
masks = np.expand_dims(masks, axis=0).astype(np.float32)
# Convert the image_3c color space from BGR to RGB
image_3c = cv2.cvtColor(image_3c, cv2.COLOR_RGB2BGR)
vis_img = image_3c.copy()
mask_img = np.zeros_like(image_3c)
cls_list = []
center_list = []
for box, mask in zip(boxes, masks):
cls=int(box[-1])
cls_list.append(cls)
dummy_img = np.zeros_like(image_3c)
dummy_img[mask!=0] = colorlist[int(box[-1])] ## cls=int(box[-1])
mask_img[mask!=0] = colorlist[int(box[-1])] ## cls=int(box[-1])
centroid = np.mean(np.argwhere(dummy_img),axis=0)
if np.isnan(centroid).all() == False:
centroid_x, centroid_y = int(centroid[1]), int(centroid[0])
center_list.append([centroid_x, centroid_y])
vis_img = cv2.addWeighted(vis_img,0.5,mask_img,0.5,0)
for i, box in enumerate (boxes):
cls=int(box[-1])
cv2.rectangle(vis_img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0,0,255),3,4)
cv2.putText(vis_img, f"{CLASSES[cls]}:{round(box[4],2)}", (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
for j in range (len(center_list)):
cv2.circle(vis_img, (center_list[j][0], center_list[j][1]), radius=5, color=(0, 0, 255), thickness=-1)
vis_img = np.concatenate([image_3c, mask_img, vis_img],axis=1)
for i in range (len(CLASSES)):
num = cls_list.count(i)
if num != 0:
print(f"Found {num} {CLASSES[i]}")
cv2.imwrite(f"./{result_path}/origin_image.jpg", image_3c)
cv2.imwrite(f"./{result_path}/mask_image.jpg", mask_img)
cv2.imwrite(f"./{result_path}/visual_image.jpg", vis_img)
return mask_img, vis_img