forked from aarathimuppalla/CV_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal_L2_1.py
236 lines (193 loc) · 7.8 KB
/
Final_L2_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# -*- coding: utf-8 -*-
import os
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Dropout, Activation, Flatten, merge, ActivityRegularization
from keras.layers import Convolution2D, MaxPooling2D, AveragePooling2D
from keras.utils import np_utils
from keras.constraints import maxnorm
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.optimizers import SGD, Adam, RMSprop
from keras import backend as K
from keras.layers import Lambda
import csv
import tensorflow as tf
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo,encoding='latin1')
return dict
def get_similarities(N,labels):
out = [];
for i in range(0,N):
a=np.floor(np.random.rand(2)*len(data))
b=int(np.array_equal(labels[int(a[1])],labels[int(a[0])]))
if not ((b==0) & (i%10 < 8)):
out.append([int(a[1]),int(a[0]),(1-b)])
return out
def generate_batch1(out,batch_size,shuffle=False):
while True:
if shuffle:
indices = np.random.permutation(np.arange(len(out)))
else:
indices = np.arange(len(out))
shuffled_triples = [out[ix] for ix in indices]
num_batches = len(shuffled_triples) // batch_size
for j in range(num_batches):
i1, i2, label1 = [], [], []
batch = out[j * batch_size : (j + 1) * batch_size]
for i in range(0,len(batch)):
i1.append(data[batch[i][0]]);
i2.append(data[batch[i][1]]);
label1.append(batch[i][2]);
X1 = np.array(i1)
X2 = np.array(i2)
Y1 = np.array(label1)
yield ([X1, X2], Y1)
def generate_batch(out,batch_size,shuffle=False):
while True:
if shuffle:
indices = np.random.permutation(np.arange(len(out)))
else:
indices = np.arange(len(out))
shuffled_triples = [out[ix] for ix in indices]
num_batches = len(shuffled_triples) // batch_size
for j in range(num_batches):
i1, i2, label1,label2 = [], [], [], []
batch = out[j * batch_size : (j + 1) * batch_size]
for i in range(0,len(batch)):
i1.append(data[batch[i][0]]);
i2.append(data[batch[i][1]]);
label1.append(batch[i][2]);
label2.append(batch[i][2]*24);
X1 = np.array(i1)
X2 = np.array(i2)
Y1 = np.array(label1)
Y2 = np.array(label2)
yield ([X1, X2], [Y1, Y2])
def generate_test_data(out):
while True:
i1, i2, label1 = [], [], []
for i in range(0,len(out)):
i1.append(data[out[i][0]]);
i2.append(data[out[i][1]]);
label1.append(out[i][2]);
X1 = np.array(i1)
X2 = np.array(i2)
Y1 = np.array(label1)
yield ([X1, X2], Y1)
def Margin_Loss(y_true, y_pred):
m=24
loss = 0.5*(1-y_true)*y_pred + 0.5*y_true*K.maximum(0.0, m - y_pred)
return loss
def euc_dist(x):
'Merge function: euclidean_distance(u,v)'
a = tf.cast(x[0] + 0.5, tf.float32)
b = tf.cast(x[1] + 0.5, tf.float32)
s = a - b;
output = K.sum((s ** 2))
return output
def euc_dist_shape(input_shape):
'Merge output shape'
shape = list(input_shape)
outshape = (shape[0][0],1)
return tuple(outshape)
data_folder = "F:\Aarathi\IIIT\Computer Vision\Project\cifar-10-batches-py"
test_file = "F:\Aarathi\IIIT\Computer Vision\Project\cifar-10-batches-py\test_batch"
#Read image data
for file in os.listdir(data_folder):
if file.endswith(".meta"):
meta_file = os.path.join(data_folder, file)
elif "data_batch_1" in file:
data_batch = os.path.join(data_folder, file)
a = unpickle(data_batch)
data = a["data"]
#print(data.shape)
labels = a["labels"]
elif "data_batch" in file:
data_batch = os.path.join(data_folder, file)
a = unpickle(data_batch)
data = np.concatenate((data,a["data"]),axis=0)
labels = np.concatenate((labels,a['labels']),axis=0)
#print(data.shape)
#print(labels.shape)
#Read Labels
b = unpickle(meta_file)
label_names = b["label_names"]
data=data.reshape((data.shape[0],3,32,32))/255.0;
labels = np_utils.to_categorical(labels, 10);
##for visualization
#print(label_names)
#print(labels[1]);
#im=data[1,:];
#im=im.reshape((3,32,32));
#plt.imshow(im.T)
#plt.show()
#####
# Create the model
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(3, 32, 32), padding='same', activation='relu', kernel_constraint=maxnorm(3), strides=1))
model.add(MaxPooling2D(pool_size=(3, 3), strides=2))
model.add(Conv2D(32, (5, 5), activation='relu', padding='same', kernel_constraint=maxnorm(3),strides=1))
model.add(AveragePooling2D(pool_size=(3, 3), strides=2,dim_ordering="th"))
model.add(Conv2D(64, (5, 5), activation='relu', padding='same', kernel_constraint=maxnorm(3),strides=1))
model.add(AveragePooling2D(pool_size=(3, 3), strides=2,dim_ordering="th"))
model.add(Flatten())
model.add(Dense(500, activation='relu'))
#BatchNormalization()
model.add(Dense(12, activation='sigmoid'))
input_shape=(3, 32, 32);
i1 = Input(input_shape)
i2 = Input(input_shape)
b1 = model(i1);
b2 = model(i2);
merge = merge([b1,b2], mode = euc_dist, output_shape=euc_dist_shape)
pred = ActivityRegularization(l1=0.01)(merge)
sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
sim_model = Model(input=[i1,i2], outputs=[merge])
sim_model.compile( loss=Margin_Loss, optimizer="adam")
#sim_model.compile( loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"])
#Generate pair of images with similarity labels
data_sim = get_similarities(200000,labels) #increase for better results
BATCH_SIZE = 200
split_point1 = int(len(data_sim) * 0.8) ;
#split_point2 = int(len(data_sim) * 0.9)
#data_sim_train, data_sim_val, data_sim_test = data_sim[0:split_point1], data_sim[split_point1:split_point2], data_sim[split_point2:]
data_sim_train, data_sim_val= data_sim[0:split_point1], data_sim[split_point1:]
NUM_EPOCHS=30 #increase for better results
train_gen = generate_batch1(data_sim_train, BATCH_SIZE,shuffle=True)
val_gen = generate_batch1(data_sim_val, BATCH_SIZE,shuffle=False)
num_train_steps = len(data_sim_train) // BATCH_SIZE
num_val_steps = len(data_sim_val) // BATCH_SIZE
model_out = sim_model.fit_generator(train_gen,
steps_per_epoch=num_train_steps,
epochs=NUM_EPOCHS,
validation_data=val_gen,
validation_steps=num_val_steps)
print(model.summary())
print(sim_model.summary())
#Getting binary values for all images in the dataset and storing in a file
out_list=[]
for i in range(0,len(data)):
a=data[i].reshape(1,3,32,32)
b = model.predict(a);b[b<0.5]=0; b[b>=0.5]=1
out_list.append(b)
csvfile = "binary.csv"
with open(csvfile, "w") as output:
writer = csv.writer(output, lineterminator='\n')
for val in out_list:
writer.writerow(np.ndarray.tolist(val[0]))
csvfile = "labels.csv"
with open(csvfile, "w") as output:
writer = csv.writer(output, lineterminator='\n')
for val in labels:
writer.writerow(val)
#loss vs epoch graph
plt.title("Loss")
plt.plot(model_out.history["loss"], color="r", label="train")
plt.plot(model_out.history["val_loss"], color="b", label="validation")
plt.legend(loc="best")
plt.tight_layout()
plt.show()