-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
148 lines (103 loc) · 4.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# coding: utf-8
# ## Import Libraries
# In[1]:
import numpy as np
import os
from keras.backend import set_image_data_format
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from keras.models import Sequential, load_model
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers.convolutional import Conv1D, Conv2D, MaxPooling2D, ZeroPadding2D
from keras.utils.np_utils import to_categorical
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
# In[2]:
set_image_data_format("channels_first")
# ## Create Data Generator
# In[3]:
batch_size = 32
# input image dimensions
img_rows, img_cols = 256, 256
train_datagen = ImageDataGenerator(
rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'./../train_data',
target_size=(img_rows, img_cols),
batch_size=batch_size)
validation_generator = test_datagen.flow_from_directory(
'./../val_data',
target_size=(img_rows, img_cols),
batch_size=batch_size)
# ## Create Training Model
# In[4]:
#number of epochs
nb_epoch = 10
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
# In[5]:
MODEL_FILENAME="./model.h5"
TRAINED_MODEL_FILENAME="./model.h5"
def load_train_model(force=False):
if not force and os.path.exists(TRAINED_MODEL_FILENAME):
model=load_model(TRAINED_MODEL_FILENAME)
else:
print("Force loading...")
model = Sequential()
model.add(Conv2D(32, kernel_size=nb_conv,
padding='same',
input_shape=(3, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(ZeroPadding2D(padding=(1,1)))
model.add(Conv2D(64, kernel_size=nb_conv,padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(ZeroPadding2D(padding=(1,1)))
model.add(Conv2D(64, kernel_size=nb_conv,padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(ZeroPadding2D(padding=(1,1)))
model.add(Conv2D(128, kernel_size=nb_conv,padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(ZeroPadding2D(padding=(1,1)))
model.add(Conv2D(128, kernel_size=nb_conv,padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(ZeroPadding2D(padding=(1,1)))
model.add(Conv2D(256, kernel_size=nb_conv,padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(ZeroPadding2D(padding=(1,1)))
model.add(Conv2D(256, kernel_size=nb_conv,padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(14))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop',metrics=['accuracy'])
print("Model loaded.")
return model
# In[ ]:
model=load_train_model(force=True)
model.summary()
# ## Train Model
# In[ ]:
checkpoint=ModelCheckpoint(MODEL_FILENAME, monitor='val_acc', verbose=0, save_best_only=False, mode='auto', period=1)
history=model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples//batch_size,
epochs=nb_epoch,
validation_data=validation_generator,
validation_steps=validation_generator.samples//batch_size,
callbacks=[checkpoint])