|
81 | 81 | },
|
82 | 82 | {
|
83 | 83 | "cell_type": "markdown",
|
84 |
| - "source": [ |
85 |
| - "## Create Train Script for CNN Model\n", |
86 |
| - "\n", |
87 |
| - "This is simple **Convolutional Neural Network (CNN)** model for recognizing hand-written digits using [MNIST Dataset](http://yann.lecun.com/exdb/mnist/). " |
88 |
| - ], |
| 84 | + "id": "ee4a3254", |
89 | 85 | "metadata": {
|
90 | 86 | "collapsed": false,
|
| 87 | + "jupyter": { |
| 88 | + "outputs_hidden": false |
| 89 | + }, |
91 | 90 | "pycharm": {
|
92 | 91 | "name": "#%% md\n"
|
93 | 92 | }
|
94 |
| - } |
| 93 | + }, |
| 94 | + "source": [ |
| 95 | + "## Create Train Script for CNN Model\n", |
| 96 | + "\n", |
| 97 | + "This is simple **Convolutional Neural Network (CNN)** model for recognizing hand-written digits using [MNIST Dataset](http://yann.lecun.com/exdb/mnist/). " |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "id": "fce87ff7-bd14-40de-aaec-824a80021705", |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "def train_mnist_model(parameters):\n", |
| 108 | + " import tensorflow as tf\n", |
| 109 | + " import numpy as np\n", |
| 110 | + " import logging\n", |
| 111 | + "\n", |
| 112 | + " logging.basicConfig(\n", |
| 113 | + " format=\"%(asctime)s %(levelname)-8s %(message)s\",\n", |
| 114 | + " datefmt=\"%Y-%m-%dT%H:%M:%SZ\",\n", |
| 115 | + " level=logging.INFO,\n", |
| 116 | + " )\n", |
| 117 | + " logging.info(\"--------------------------------------------------------------------------------------\")\n", |
| 118 | + " logging.info(f\"Input Parameters: {parameters}\")\n", |
| 119 | + " logging.info(\"--------------------------------------------------------------------------------------\\n\\n\")\n", |
| 120 | + "\n", |
| 121 | + "\n", |
| 122 | + " # Get HyperParameters from the input params dict.\n", |
| 123 | + " lr = float(parameters[\"lr\"])\n", |
| 124 | + " num_epoch = int(parameters[\"num_epoch\"])\n", |
| 125 | + "\n", |
| 126 | + " # Set dist parameters and strategy.\n", |
| 127 | + " is_dist = parameters[\"is_dist\"]\n", |
| 128 | + " num_workers = parameters[\"num_workers\"]\n", |
| 129 | + " batch_size_per_worker = 64\n", |
| 130 | + " batch_size_global = batch_size_per_worker * num_workers\n", |
| 131 | + " strategy = tf.distribute.MultiWorkerMirroredStrategy(\n", |
| 132 | + " communication_options=tf.distribute.experimental.CommunicationOptions(\n", |
| 133 | + " implementation=tf.distribute.experimental.CollectiveCommunication.RING\n", |
| 134 | + " )\n", |
| 135 | + " )\n", |
| 136 | + "\n", |
| 137 | + " # Callback class for logging training.\n", |
| 138 | + " # Katib parses metrics in this format: <metric-name>=<metric-value>.\n", |
| 139 | + " class CustomCallback(tf.keras.callbacks.Callback):\n", |
| 140 | + " def on_epoch_end(self, epoch, logs=None):\n", |
| 141 | + " logging.info(\n", |
| 142 | + " \"Epoch {}/{}. accuracy={:.4f} - loss={:.4f}\".format(\n", |
| 143 | + " epoch+1, num_epoch, logs[\"accuracy\"], logs[\"loss\"]\n", |
| 144 | + " )\n", |
| 145 | + " )\n", |
| 146 | + "\n", |
| 147 | + " # Prepare MNIST Dataset.\n", |
| 148 | + " def mnist_dataset(batch_size):\n", |
| 149 | + " (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()\n", |
| 150 | + " x_train = x_train / np.float32(255)\n", |
| 151 | + " y_train = y_train.astype(np.int64)\n", |
| 152 | + " train_dataset = (\n", |
| 153 | + " tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", |
| 154 | + " .shuffle(60000)\n", |
| 155 | + " .repeat()\n", |
| 156 | + " .batch(batch_size)\n", |
| 157 | + " )\n", |
| 158 | + " return train_dataset\n", |
| 159 | + "\n", |
| 160 | + " # Build and compile CNN Model.\n", |
| 161 | + " def build_and_compile_cnn_model():\n", |
| 162 | + " model = tf.keras.Sequential(\n", |
| 163 | + " [\n", |
| 164 | + " tf.keras.layers.InputLayer(input_shape=(28, 28)),\n", |
| 165 | + " tf.keras.layers.Reshape(target_shape=(28, 28, 1)),\n", |
| 166 | + " tf.keras.layers.Conv2D(32, 3, activation=\"relu\"),\n", |
| 167 | + " tf.keras.layers.Flatten(),\n", |
| 168 | + " tf.keras.layers.Dense(128, activation=\"relu\"),\n", |
| 169 | + " tf.keras.layers.Dense(10),\n", |
| 170 | + " ]\n", |
| 171 | + " )\n", |
| 172 | + " model.compile(\n", |
| 173 | + " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", |
| 174 | + " optimizer=tf.keras.optimizers.SGD(learning_rate=lr),\n", |
| 175 | + " metrics=[\"accuracy\"],\n", |
| 176 | + " )\n", |
| 177 | + " return model\n", |
| 178 | + " \n", |
| 179 | + " # Download Dataset.\n", |
| 180 | + " dataset = mnist_dataset(batch_size_global)\n", |
| 181 | + "\n", |
| 182 | + " # For dist strategy we should build model under scope().\n", |
| 183 | + " if is_dist:\n", |
| 184 | + " logging.info(\"Running Distributed Training\")\n", |
| 185 | + " logging.info(\"--------------------------------------------------------------------------------------\\n\\n\")\n", |
| 186 | + " with strategy.scope():\n", |
| 187 | + " model = build_and_compile_cnn_model()\n", |
| 188 | + " else:\n", |
| 189 | + " logging.info(\"Running Single Worker Training\")\n", |
| 190 | + " logging.info(\"--------------------------------------------------------------------------------------\\n\\n\")\n", |
| 191 | + " model = build_and_compile_cnn_model()\n", |
| 192 | + " \n", |
| 193 | + " # Start Training.\n", |
| 194 | + " model.fit(\n", |
| 195 | + " dataset,\n", |
| 196 | + " epochs=num_epoch,\n", |
| 197 | + " steps_per_epoch=70,\n", |
| 198 | + " callbacks=[CustomCallback()],\n", |
| 199 | + " verbose=0,\n", |
| 200 | + " )" |
| 201 | + ] |
95 | 202 | },
|
96 | 203 | {
|
97 | 204 | "cell_type": "markdown",
|
|
0 commit comments