-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimization.py
200 lines (167 loc) · 8.26 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import math
import torch
from collections import defaultdict
from torch.optim.optimizer import Optimizer
class RAdam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
self.degenerated_to_sgd = degenerated_to_sgd
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
for param in params:
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
param['buffer'] = [[None, None, None] for _ in range(10)]
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
buffer=[[None, None, None] for _ in range(10)])
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(RAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError('RAdam does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
exp_avg_sq.mul_(beta2).addcmul_(tensor1=grad, tensor2=grad, value=(1 - beta2))
exp_avg.mul_(beta1).add_(grad, alpha=1-beta1)
state['step'] += 1
buffered = group['buffer'][int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
N_sma_max - 2)) / (1 - beta1 ** state['step'])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1 ** state['step'])
else:
step_size = -1
buffered[2] = step_size
# more conservative since it's an approximated value
if N_sma >= 5:
if group['weight_decay'] != 0:
p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr'])
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr'])
p.data.copy_(p_data_fp32)
elif step_size > 0:
if group['weight_decay'] != 0:
p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr'])
p_data_fp32.add_(exp_avg, alpha=-step_size * group['lr'])
p.data.copy_(p_data_fp32)
return loss
class Lookahead(Optimizer):
"""
PyTorch implementation of the lookahead wrapper.
Lookahead Optimizer: https://arxiv.org/abs/1907.08610
"""
def __init__(self, optimizer, alpha=0.5, k=6, pullback_momentum="none"):
"""
Args:
optimizer: inner optimizer
alpha (float): number of lookahead steps
k (int): linear interpolation factor. 1.0 recovers the inner optimizer.
pullback_momentum (str): change to inner optimizer momentum on interpolation update
"""
if not 0.0 <= alpha <= 1.0:
raise ValueError(f'Invalid slow update rate: {alpha}')
if not 1 <= k:
raise ValueError(f'Invalid lookahead steps: {k}')
self.optimizer = optimizer
self.param_groups = self.optimizer.param_groups
self.alpha = alpha
self.k = k
self.step_counter = 0
assert pullback_momentum in ["reset", "pullback", "none"]
self.pullback_momentum = pullback_momentum
self.state = defaultdict(dict)
# Cache the current optimizer parameters
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['cached_params'] = torch.zeros_like(p.data)
param_state['cached_params'].copy_(p.data)
def __getstate__(self):
return {
'state': self.state,
'optimizer': self.optimizer,
'alpha': self.alpha,
'step_counter': self.step_counter,
'k':self.k,
'pullback_momentum': self.pullback_momentum
}
def zero_grad(self):
self.optimizer.zero_grad()
def state_dict(self):
return self.optimizer.state_dict()
def load_state_dict(self, state_dict):
self.optimizer.load_state_dict(state_dict)
def _backup_and_load_cache(self):
"""Useful for performing evaluation on the slow weights (which typically generalize better)
"""
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['backup_params'] = torch.zeros_like(p.data)
param_state['backup_params'].copy_(p.data)
p.data.copy_(param_state['cached_params'])
def _clear_and_load_backup(self):
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
p.data.copy_(param_state['backup_params'])
del param_state['backup_params']
def step(self, closure=None):
"""Performs a single Lookahead optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = self.optimizer.step(closure)
self.step_counter += 1
if self.step_counter >= self.k:
self.step_counter = 0
# Lookahead and cache the current optimizer parameters
for group in self.optimizer.param_groups:
for p in group['params']:
param_state = self.state[p]
# crucial line
p.data.mul_(self.alpha).add_(param_state['cached_params'], alpha=1.0-self.alpha)
param_state['cached_params'].copy_(p.data)
if self.pullback_momentum == "pullback":
internal_momentum = self.optimizer.state[p]["momentum_buffer"]
self.optimizer.state[p]["momentum_buffer"] = internal_momentum.mul_(self.alpha).add_(
param_state["cached_mom"], alpha=1.0-self.alpha)
param_state["cached_mom"] = self.optimizer.state[p]["momentum_buffer"]
elif self.pullback_momentum == "reset":
self.optimizer.state[p]["momentum_buffer"] = torch.zeros_like(p.data)
return loss