diff --git a/.gitignore b/.gitignore index f563422..9aba18a 100644 --- a/.gitignore +++ b/.gitignore @@ -129,4 +129,7 @@ dmypy.json .pyre/ raw processed -out \ No newline at end of file +out + +*.pdf +*.png \ No newline at end of file diff --git a/README.md b/README.md index caa8d49..c7bb5c3 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,9 @@ -# Predictive Maintenance (PM) +# Predictive Maintenance -This repository is intended to enable quick access to datasets for predictive maintenance tasks. -The follwoing table summrizes the available features for the PM tasks, +This repository is intended to enable quick access to datasets for predictive maintenance (PM) tasks. +The following table summarizes the available features, where the marks show: -- `x`: satisfying availablity +- `x`: satisfying availability - `u`: univariate features - `m`: multivariate features @@ -27,6 +27,20 @@ the richness of attributes you may check them up with higher priority. +## Usage + +Please put `datasets` directory into your workspace and import it like: + +```python +import datasets + +# Exmaple +datasets.ufd.load_data() +``` + +## Notebooks + +There are Jupyter notebooks for all datasets, which may help interactive processing and visualization of data. ## References @@ -40,28 +54,28 @@ the richness of attributes you may check them up with higher priority. [https://square.github.io/pysurvival/index.html](https://square.github.io/pysurvival/index.html) 1. Types of proactive maintenance: [https://solutions.borderstates.com/types-of-proactive-maintenance/](https://solutions.borderstates.com/types-of-proactive-maintenance/) -1. Common license types for datasets +1. Common license types for datasets: [https://www.kaggle.com/general/116302](https://www.kaggle.com/general/116302) ### Dataset Sources 1. ALPI: Diego Tosato, Davide Dalle Pezze, Chiara Masiero, Gian Antonio Susto, Alessandro Beghi, 2020. Alarm Logs in Packaging Industry (ALPI). [https://dx.doi.org/10.21227/nfv6-k750](https://dx.doi.org/10.21227/nfv6-k750) -1. UFD: Ultrasonic flowmeter diagnostics Data Set +1. UFD: Ultrasonic flowmeter diagnostics Data Set: [https://archive.ics.uci.edu/ml/datasets/Ultrasonic+flowmeter+diagnostics](https://archive.ics.uci.edu/ml/datasets/Ultrasonic+flowmeter+diagnostics) -1. NASA Bearing Dataset +1. NASA Bearing Dataset: [https://www.kaggle.com/vinayak123tyagi/bearing-dataset](https://www.kaggle.com/vinayak123tyagi/bearing-dataset) -1. CWRU Bearing Dataset +1. CWRU Bearing Dataset: [https://www.kaggle.com/brjapon/cwru-bearing-datasets](https://www.kaggle.com/brjapon/cwru-bearing-datasets) -1. MAPM: Microsoft Azure Predictive Maintenance +1. MAPM: Microsoft Azure Predictive Maintenance: [https://www.kaggle.com/arnabbiswas1/microsoft-azure-predictive-maintenance](https://www.kaggle.com/arnabbiswas1/microsoft-azure-predictive-maintenance) -1. HydSys: Predictive Maintenance Of Hydraulics System +1. HydSys: Predictive Maintenance Of Hydraulics System: [https://www.kaggle.com/mayank1897/condition-monitoring-of-hydraulic-systems](https://www.kaggle.com/mayank1897/condition-monitoring-of-hydraulic-systems) -1. GFD: Gearbox Fault Diagnosis +1. GFD: Gearbox Fault Diagnosis: [https://www.kaggle.com/brjapon/gearbox-fault-diagnosis](https://www.kaggle.com/brjapon/gearbox-fault-diagnosis) -1. PPD: Production Plant Data for Condition Monitoring +1. PPD: Production Plant Data for Condition Monitoring: [https://www.kaggle.com/inIT-OWL/production-plant-data-for-condition-monitoring](https://www.kaggle.com/inIT-OWL/production-plant-data-for-condition-monitoring) -1. GDD: Genesis demonstrator data for machine learning +1. GDD: Genesis demonstrator data for machine learning: [https://www.kaggle.com/inIT-OWL/genesis-demonstrator-data-for-machine-learning](https://www.kaggle.com/inIT-OWL/genesis-demonstrator-data-for-machine-learning)