-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrite_read_tfrecords.py
151 lines (123 loc) · 6.04 KB
/
write_read_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#coding:utf-8
"""
kobexie
2018-04-28
"""
import tensorflow as tf
import numpy as np
import os
import cv2
import time
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# write all example into one single tfrecords file
def write_tfRecord(data=None, label=None, file_name='test.tfrecord'):
"""
data: your data list or np.ndarray
label: label list
file_name: the tfrecord file storage data and label
"""
# Compress the frames using JPG and store in as a list of strings in 'frames'
# here suppose we have 10 data with same shape [50,100,3], but label has different length, eg. OCR task.
with tf.python_io.TFRecordWriter(file_name) as writer:
for i in range(10):
# prepare data and label
data = np.ones((50, 100, 3), dtype=np.uint8) # np.ndarray
label = list(np.arange(i+1)) # list of int
features = {} # each example has these features
features['label'] = _int64_feature(label)# 'label' is a feature of tf.train. BytesList
features['data'] = _bytes_feature(data.tostring())
# write serialized example into .tfrecords
tfrecord_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tfrecord_example.SerializeToString())
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
# 1.read serialized examples from File Queue.
xxxx, serialized_example = reader.read(filename_queue)
# 2.the rules of parse tf.train.Example, FixedLenFeature/VarLenFeature/SparseFeature
features = {}
features['data'] = tf.FixedLenFeature([], tf.string)
features['label'] = tf.VarLenFeature(tf.int64)
# 3.parse examples
parsed_features = tf.parse_single_example(serialized_example, features)
# Decode raw string using tf.decode_raw() into uint8 and reshape original shape
frames = tf.decode_raw(parsed_features["data"], tf.uint8)
frames = tf.reshape(frames, [50, 100, 3]) #[50,100,3]
# Convert from [0, 255] -> [-0.5, 0.5] floats.
frames = tf.cast(frames, tf.float32) * (1. / 255) - 0.5
# Decode a tf.VarLenFeature by tf.sparse_tensor_to_dense
# generate (index, value, shape) triple
label = tf.serialize_sparse(parsed_features['label']) #for tf.VarLenFeature
return frames, label
def inputs(tfrecords, batch_size, num_epochs, is_sparse_label=True):
with tf.name_scope('input'):
# 1.push the '.tfrecords' files into File Queue.
filename_queue = tf.train.string_input_producer([tfrecords], num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images_batch, labels_batch_serialized = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=2,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
# for variable length labels
sparse_labels_batch = tf.deserialize_many_sparse(labels_batch_serialized, dtype=tf.int64)
if is_sparse_label:
labels_batch = sparse_labels_batch
else:
labels_batch = tf.sparse_tensor_to_dense(sparse_labels_batch)
return images_batch, labels_batch
def run_training():
# Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Input images and labels.
frames, label = inputs('test.tfrecord', batch_size=3, num_epochs=5)
# The op for initializing the variables.
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
# Create a session for running operations in the Graph.
sess = tf.Session()
# Initialize the variables (the trained variables and the epoch counter).
sess.run(init_op)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
step = 0
while not coord.should_stop():
start_time = time.time()
# Run one step of the model. The return values are
# the activations from the `train_op` (which is
# discarded) and the `loss` op. To inspect the values
# of your ops or variables, you may include them in
# the list passed to sess.run() and the value tensors
# will be returned in the tuple from the call.
#_, loss_value = sess.run([train_op, loss])
res_frames, res_label = sess.run([frames, label])
print res_frames.shape, res_label
duration = time.time() - start_time
# Print an overview fairly often.
loss_value = 0.22
if step % 10 == 0:
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
step += 1
except tf.errors.OutOfRangeError:
print('Done training for %d epochs, %d steps.' % (5, step))
finally:
# When done, ask the threads to stop.
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
sess.close()
if __name__=="__main__":
write_tfRecord()
run_training()