-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
143 lines (112 loc) · 4.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding: utf-8
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Dataset
from torch.autograd import Variable
import os
from PIL import Image
from torchvision.utils import save_image
from torchsummary import summary
class Pre_dataset(Dataset):
# im_name_list, resize_dim,
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.im_list = os.listdir(self.root_dir)
self.inputdir = os.listdir(f"{self.root_dir}/input")
self.outputdir = os.listdir(f"{self.root_dir}/output")
# self.resize_dim = resize_dim
self.transform = transform
def __len__(self):
return len(self.inputdir)
def __getitem__(self, idx):
# im = Image.open(os.path.join(self.root_dir, self.im_list[idx]))
input = Image.open(os.path.join(f"{self.root_dir}/input", self.inputdir[idx]))
output = Image.open(os.path.join(f"{self.root_dir}/output", self.outputdir[idx]))
input = input.resize((1024, 1024))
input = np.array(input)
output = output.resize((1024, 1024))
output = np.array(output)
# im = im.resize(12288)
# im = Image(im, self.resize_dim, interp='nearest')
# im = im / 255.0
if self.transform:
input = self.transform(input)
output = self.transform(output)
return input, output
class ConvAutoencoder(nn.Module):
def __init__(self):
super(ConvAutoencoder, self).__init__()
# Encoder
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 4, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
# Decoder
self.t_conv1 = nn.ConvTranspose2d(4, 16, 2, stride=2)
self.t_conv2 = nn.ConvTranspose2d(16, 3, 2, stride=2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = F.relu(self.t_conv1(x))
x = F.sigmoid(self.t_conv2(x))
return x
if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Instantiate the model
model = ConvAutoencoder()
model.to(device)
# summary(model, [(3, 512, 512)])
# print(model)
#Loss function
criterion = nn.BCELoss()
def my_loss(output, target):
loss = torch.mean((output - target)**2)
return loss
#Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# model.cuda()
# summary(model, [(3, 512, 512)])
batch_size = 10
train_x = Pre_dataset("dataset", transform=transforms.ToTensor())
# train_y = Pre_dataset("dataset/output", transform=transforms.ToTensor())
test_x = Pre_dataset("dataset_test", transform=transforms.ToTensor())
# test_y = Pre_dataset("dataset_test/output", transform=transforms.ToTensor())
trainx_loader = DataLoader(train_x, batch_size=batch_size, shuffle=True)
testx_loader = DataLoader(test_x, batch_size=batch_size, shuffle=False)
print(device)
# for idx in range(len(train_x)):
# print(idx)
# print(train_x[idx][0].size())
# print(train_x[idx][1].size())
n_epochs = 50
# Training code
for epoch in range(1, n_epochs + 1):
# monitor training loss
model.train()
train_loss = 0.0
# Training
for idx, (x, y) in enumerate(trainx_loader):
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
outputs = model(x)
# print(f"xsize {x.size()} ysize {y.size()} outputs_size {outputs.size()}")
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
train_loss += loss.item()
if idx % 10 == 0:
print(f"epochs: {epoch}, train_step: {idx / len(trainx_loader)}, train_loss: {train_loss / len(trainx_loader)}")
train_loss = train_loss / len(trainx_loader)
print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch, train_loss))
torch.save(model.state_dict(), "test.pt")
# print(train_x[0])
# print(train_x[0].size())