-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathimage_model.py
68 lines (53 loc) · 2.35 KB
/
image_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
'''from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse
from PIL import Image
from transformers import BlipProcessor, BlipForQuestionAnswering
import io
app = FastAPI()
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
@app.post("/chat")
async def chat(question: str = Form(...), image: UploadFile = File(...)):
image_content = await image.read()
raw_image = Image.open(io.BytesIO(image_content)).convert('RGB')
inputs = processor(raw_image, question, return_tensors="pt")
out = model.generate(**inputs)
answer = processor.decode(out[0], skip_special_tokens=True)
return JSONResponse(content={"response": answer})
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
'''
'''
from PIL import Image
from transformers import BlipProcessor, BlipForQuestionAnswering
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
img_url = './cat.jpg'
raw_image = Image.open(img_url).convert('RGB')
question = "how many cats are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
'''
from flask import Flask, request, jsonify
from PIL import Image
from transformers import BlipProcessor, BlipForQuestionAnswering
import io
app = Flask(__name__)
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
@app.route('/vqa', methods=['POST'])
def vqa():
if 'image' not in request.files or 'question' not in request.form:
return jsonify({'error': 'Missing image or question'}), 400
image_file = request.files['image']
question = request.form['question']
image_bytes = image_file.read()
raw_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
inputs = processor(raw_image, question, return_tensors="pt")
out = model.generate(**inputs, max_length=100)
answer = processor.decode(out[0], skip_special_tokens=True)
return jsonify({'answer': answer})
if __name__ == '__main__':
app.run(debug=True)