-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathphobert.py
272 lines (234 loc) · 11 KB
/
phobert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# -*- coding: utf-8 -*-
"""PHOBERT.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1oe75UzYqQzdhbacLAHZPGE8KFMQNwUvd
"""
import os
path = '/content/drive/MyDrive/VLSP_ReINTEL'
#you should change this path to your project folder path
os.chdir(path)
# install requirement library
!pip install transformers
!pip install fastBPE
!pip install fairseq
!pip install vncorenlp
#download PhoBERT base transformer
# you must run this cell first time you run this code
#!wget https://public.vinai.io/PhoBERT_base_transformers.tar.gz
#!tar -xzvf PhoBERT_base_transformers.tar.gz
# Download VnCoreNLP-1.1.1.jar & its word segmentation component (i.e. RDRSegmenter)
# you must run this cell first time you run this code
#!mkdir -p vncorenlp/models/wordsegmenter
#!wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/VnCoreNLP-1.1.1.jar
#!wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/models/wordsegmenter/vi-vocab
#!wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/models/wordsegmenter/wordsegmenter.rdr
#!mv VnCoreNLP-1.1.1.jar vncorenlp/
#!mv vi-vocab vncorenlp/models/wordsegmenter/
#!mv wordsegmenter.rdr vncorenlp/models/wordsegmenter/
import pandas as pd
from tqdm import tqdm
tqdm.pandas()
import json
import numpy as np
import pickle
import os
import torch
def convert_lines(df, vocab, bpe, max_sequence_length):
outputs = np.zeros((len(df), max_sequence_length))
cls_id = 0
eos_id = 2
pad_id = 1
for idx, row in tqdm(df.iterrows(), total=len(df)):
subwords = bpe.encode('<s> '+row.post_message+' </s>')
input_ids = vocab.encode_line(subwords, append_eos=False, add_if_not_exist=False).long().tolist()
if len(input_ids) > max_sequence_length:
input_ids = input_ids[:max_sequence_length]
input_ids[-1] = eos_id
else:
input_ids = input_ids + [pad_id, ]*(max_sequence_length - len(input_ids))
outputs[idx,:] = np.array(input_ids)
return outputs
def seed_everything(SEED):
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
def sigmoid(x):
return 1 / (1 + np.exp(-x))
from vncorenlp import VnCoreNLP
rdrsegmenter = VnCoreNLP(path+'/vncorenlp/VnCoreNLP-1.1.1.jar', annotators="wseg", max_heap_size='-Xmx500m')
from fairseq.data.encoders.fastbpe import fastBPE
from fairseq.data import Dictionary
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--bpe-codes',
default=path+"/PhoBERT_base_transformers/bpe.codes",
required=False,
type=str,
help='path to fastBPE BPE'
)
args, unknown = parser.parse_known_args()
bpe = fastBPE(args)
# Load the dictionary
vocab = Dictionary()
vocab.add_from_file(path+"/PhoBERT_base_transformers/dict.txt")
import pandas as pd
from tqdm import tqdm
tqdm.pandas()
from torch import nn
import json
import numpy as np
import pickle
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold,train_test_split
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
from transformers import *
import torch
import matplotlib.pyplot as plt
import torch.utils.data
import torch.nn.functional as F
import argparse
from transformers.modeling_utils import *
#load data
import pandas as pd
train = pd.read_csv(path+'/VSLP_data/public_train (1).csv')
public_test = pd.read_csv(path+'/VSLP_data/public_test.csv')
test = pd.read_csv(path+'/VSLP_data/final_private_test_dropped_no_label - final_private_test_dropped_no_label.csv')
class RobertaForReINTEL(BertPreTrainedModel):
config_class = RobertaConfig
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin",
'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin",
'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin",
'distilroberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-pytorch_model.bin",
'roberta-base-openai-detector': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-openai-detector-pytorch_model.bin",
'roberta-large-openai-detector': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-openai-detector-pytorch_model.bin",
}
pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "roberta"
def __init__(self, config):
super(RobertaForReINTEL, self).__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.qa_outputs = nn.Linear(4*config.hidden_size, self.num_labels)
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
start_positions=None, end_positions=None):
outputs = self.roberta(input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask)
cls_output = torch.cat((outputs[2][-1][:,0, ...],outputs[2][-2][:,0, ...], outputs[2][-3][:,0, ...], outputs[2][-4][:,0, ...]),-1)
logits = self.qa_outputs(cls_output)
return logits
from transformers import RobertaForSequenceClassification, RobertaConfig, AdamW
config = RobertaConfig.from_pretrained(
path+"/PhoBERT_base_transformers/config.json",
output_hidden_states=True,
num_labels=1
)
model_bert = RobertaForReINTEL.from_pretrained(path+'/PhoBERT_base_transformers/model.bin', config=config)
if torch.cuda.device_count():
print(f"Training using {torch.cuda.device_count()} gpus")
model_bert = nn.DataParallel(model_bert)
tsfm = model_bert.module.roberta
else:
tsfm = model_bert.roberta
kmax_sequence_length= 256
kbatch_size= 32
kaccumulation_steps= 5
kepochs= 5
kfold= 0
kseed= 42
klr= 2e-5
train_df = train[['id','post_message','label']].fillna('none')
train_df.post_message = train_df.post_message.progress_apply(lambda x: ' '.join([' '.join(sent) for sent in rdrsegmenter.tokenize(x)]))
y = train_df.label.values
X_train = convert_lines(train_df, vocab, bpe, kmax_sequence_length)
param_optimizer = list(model_bert.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = int(kepochs*len(train_df)/kbatch_size/kaccumulation_steps)
optimizer = AdamW(optimizer_grouped_parameters, lr=klr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=100, num_training_steps=num_train_optimization_steps) # PyTorch scheduler
scheduler0 = get_constant_schedule(optimizer) # PyTorch scheduler
splits = list(StratifiedKFold(n_splits=5, shuffle=True, random_state=123).split(X_train, y))
for fold, (train_idx, val_idx) in enumerate(splits):
if fold != kfold:
continue
train_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train[train_idx],dtype=torch.long), torch.tensor(y[train_idx],dtype=torch.long))
valid_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train[val_idx],dtype=torch.long), torch.tensor(y[val_idx],dtype=torch.long))
tq = tqdm(range(kepochs + 1))
for child in tsfm.children():
for param in child.parameters():
if not param.requires_grad:
print("whoopsies")
param.requires_grad = False
frozen = True
for epoch in tq:
if epoch > 0 and frozen:
for child in tsfm.children():
for param in child.parameters():
param.requires_grad = True
frozen = False
del scheduler0
torch.cuda.empty_cache()
val_preds = None
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=kbatch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=kbatch_size, shuffle=False)
avg_loss = 0.
avg_accuracy = 0.
optimizer.zero_grad()
pbar = tqdm(enumerate(train_loader),total=len(train_loader),leave=False)
for i,(x_batch, y_batch) in pbar:
model_bert.train()
y_pred = model_bert(x_batch.cuda(), attention_mask=(x_batch>0).cuda())
loss = F.binary_cross_entropy_with_logits(y_pred.view(-1).cuda(),y_batch.float().cuda())
loss = loss.mean()
loss.backward()
if i % kaccumulation_steps == 0 or i == len(pbar) - 1:
optimizer.step()
optimizer.zero_grad()
if not frozen:
scheduler.step()
else:
scheduler0.step()
lossf = loss.item()
pbar.set_postfix(loss = lossf)
avg_loss += loss.item() / len(train_loader)
model_bert.eval()
pbar = tqdm(enumerate(valid_loader),total=len(valid_loader),leave=False)
for i,(x_batch, y_batch) in pbar:
y_pred = model_bert(x_batch.cuda(), attention_mask=(x_batch>0).cuda())
y_pred = y_pred.squeeze().detach().cpu().numpy()
val_preds = np.atleast_1d(y_pred) if val_preds is None else np.concatenate([val_preds, np.atleast_1d(y_pred)])
val_preds = sigmoid(val_preds)
score = f1_score(y[val_idx], val_preds > 0.5)
print(f"\nAUC = {roc_auc_score(y[val_idx], val_preds):.4f}, F1 score @0.5 = {score:.4f}")
torch.save(model_bert.state_dict(),os.path.join(path, f'phobert_model.bin'))
test_df = test[['id','post_message']].fillna('none')
test_df.post_message = test_df.post_message.progress_apply(lambda x: ' '.join([' '.join(sent) for sent in rdrsegmenter.tokenize(x)]))
X_test = convert_lines(test_df, vocab, bpe,kmax_sequence_length)
preds_en = []
for fold in range(5):
print(f"Predicting for fold {fold}")
preds_fold = []
model_bert.load_state_dict(torch.load(os.path.join(path, f'phobert_model.bin')))
test_dataset = torch.utils.data.TensorDataset(torch.tensor(X_test,dtype=torch.long))
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=kbatch_size, shuffle=False)
model_bert.eval()
pbar = tqdm(enumerate(test_loader),total=len(test_loader),leave=False)
for i, (x_batch,) in pbar:
y_pred = model_bert(x_batch.cuda(), attention_mask=(x_batch>0).cuda())
y_pred = y_pred.view(-1).detach().cpu().numpy()
preds_fold = np.concatenate([preds_fold, y_pred])
preds_fold = sigmoid(preds_fold)
preds_en.append(preds_fold)
preds_en = np.mean(preds_en,axis=0)
#test_df["label"] = (preds_en > 0.5).astype(np.int)
x = pd.DataFrame({'test_id':test_df['id'],'label probability':preds_en})
x.to_csv('results.csv',index=False,header=False)