This repository has been archived by the owner on Jun 14, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnf_converter.pl
269 lines (224 loc) · 9.94 KB
/
cnf_converter.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
%
% Copyright (C) 2021 Kian Cross
%
:- dynamic(node/4).
% Check that a node has been defined exactly once.
is_node_unique(NodeID) :-
findall(NodeID, node(NodeID, _, _, _), Nodes),
length(Nodes, 1).
disjoint_lists([], _).
disjoint_lists([HeadA | TailA], ListB) :-
\+ member(HeadA, ListB),
disjoint_lists(TailA, ListB).
validate_tree(NodeID) :- validate_tree(NodeID, [], _).
% Recursive base case (when the node ID is void, there are
% no child IDs).
validate_tree(void, _, []) :- !.
% We are trying to solve two problems
% 1) Make sure the binary tree is valid (i.e. nodes are distinct).
% 2) Make sure there are no cycles (stop infinite loops).
%
% For 2), we store a list of previously encountered nodes as we traverse
% down the tree. If a duplicate is found, it means a cycle has occurred.
%
% For 1), as we move back up the tree, we keep a list of all child nodes.
% At each node, we check that the set of child nodes from the left and right
% are disjoint (i.e. all the nodes are distinct), if they are, we merge the
% lists and go another step up the tree.
validate_tree(NodeID, TraversedNodes, ChildNodes) :-
node(NodeID, _, LeftChild, RightChild),
% Unfortunately we have to put a cut here to stop backtracking
% from occurring when we validate a node with an auto_generated(_)
% ID. Not entirely sure why this only happens with auto-generated
% IDs, but must be something to do with the way unification works.
% In any case, it's not a big deal, it just means you can't do a
% query such as print_tree(X) to print every node in the knowledge-base
% (not that there is a good reason for doing that in the first place,
% to be fair).
!,
is_node_unique(NodeID),
% Check that the node has NOT already been encountered.
\+ member(NodeID, TraversedNodes),
% Recursively check the left nodes, then recursively check the right
% nodes. If these succeed, it means both the left and right side is
% a valid binary tree.
validate_tree(LeftChild, [NodeID | TraversedNodes], LeftChildNodes),
validate_tree(RightChild, [NodeID | TraversedNodes], RightChildNodes),
% Now we check that both lists are disjoint.
disjoint_lists(LeftChildNodes, RightChildNodes),
% If they are then we join the lists together, including the
% ID of the current node.
append([NodeID | LeftChildNodes], RightChildNodes, ChildNodes).
% If a unary operator is being printed (the only unary operator
% at the moment is not), then we only want to output the left child.
print_arguments(LeftChild, void) :- print_node(LeftChild), !.
print_arguments(LeftChild, RightChild) :-
print_node(LeftChild),
write(','),
print_node(RightChild).
% If a node has no children then it is an atom (and therefore
% a leaf on the tree).
print_node(OpProp, void, void) :- write(OpProp), !.
print_node(OpProp, LeftChild, RightChild) :-
write(OpProp),
write('('),
print_arguments(LeftChild, RightChild),
write(')').
% Expand a node ID to a node with all
% arguments.
print_node(NodeID) :-
node(NodeID, OpProp, LeftChild, RightChild),
% We can cut here, as we only want the first node with a given ID
% (they should be distinct in the knowledge-base anyway).
!,
print_node(OpProp, LeftChild, RightChild).
% Print the tree, performing validation first.
print_tree(NodeID) :-
validate_tree(NodeID),
print_node(NodeID).
unique_id(NewID) :- unique_id(NewID, 0).
% If no node exists with the current ID, then
% we can use it.
unique_id(autogenerated(Counter), Counter) :- \+ node(autogenerated(Counter), _, _, _), !.
% Otherwise we need to increment the counter, then recursively
% call the goal again.
unique_id(NewID, Counter) :-
IncrementedCounter is Counter + 1,
unique_id(NewID, IncrementedCounter).
% Unlike before, we do not just have to worry about automatically
% generating internal nodes, Now, because of distributivity, we need
% to be able to duplicate leaf nodes. This causes a problem. With
% internal nodes, we just used the IDs of the children to construct
% an ID for the new node. However, leave nodes don't have children.
% So we have to generate a new unique ID.
autogenerated_id(void, void, NewID) :- unique_id(NewID), !.
autogenerated_id(LeftChild, RightChild, autogenerated(LeftChild, RightChild)).
% Duplicates a node and all of it's children. Here is how it works:
% 1) Recurse all the way down to the leaf nodes. For these, nodes,
% generate a unique ID.
%
% 2) Then, as we work our way back up the tree, set the IDs for the
% internal nodes to autogenerated(LeftChild, RightChild). i.e. we
% use the IDs of the children to construct an ID for the current node.
deep_duplicate_node(void, void).
deep_duplicate_node(NodeID, NewID) :-
node(NodeID, OpProp, LeftChild, RightChild),
deep_duplicate_node(LeftChild, NewLeftChildID),
deep_duplicate_node(RightChild, NewRightChildID),
autogenerated_id(NewLeftChildID, NewRightChildID, NewID),
asserta(node(NewID, OpProp, NewLeftChildID, NewRightChildID)).
% Used by DeMorgan law, so that we can use one rule
% for both AND and OR.
and_or_map(and, or).
and_or_map(or, and).
% The rules below are fairly self explanatory.
demorgan(NodeID) :-
node(NodeID, not, LeftChild, void),
node(LeftChild, Op, P, Q),
and_or_map(Op, FlippedOp),
autogenerated_id(Q, void, NewNodeID),
retract(node(NodeID, not, LeftChild, void)),
retract(node(LeftChild, Op, P, Q)),
asserta(node(NodeID, FlippedOp, LeftChild, NewNodeID)),
asserta(node(LeftChild, not, P, void)),
asserta(node(NewNodeID, not, Q, void)).
double_negation_elimination(NodeID) :-
node(NodeID, not, LeftChild, void),
node(LeftChild, not, LeftSubChild, void),
node(LeftSubChild, P, PLeft, PRight),
retract(node(NodeID, not, LeftChild, void)),
retract(node(LeftChild, not, LeftSubChild, void)),
asserta(node(NodeID, P, PLeft, PRight)).
implication_elimination(NodeID) :-
node(NodeID, implies, LeftChild, RightChild),
autogenerated_id(LeftChild, void, NewNodeID),
retract(node(NodeID, implies, LeftChild, RightChild)),
asserta(node(NodeID, or, NewNodeID, RightChild)),
asserta(node(NewNodeID, not, LeftChild, void)).
% converting OR(AND(P, Q), R) to AND(OR(P, R), OR(Q, R)).
or_over_and_distributivity(NodeID) :-
node(NodeID, or, LeftChild, R),
node(LeftChild, and, P, Q),
deep_duplicate_node(R, NewR),
autogenerated_id(Q, NewR, NewOrID),
retract(node(NodeID, or, LeftChild, R)),
retract(node(LeftChild, and, P, Q)),
asserta(node(NodeID, and, LeftChild, NewOrID)),
asserta(node(LeftChild, or, P, R)),
asserta(node(NewOrID, or, Q, NewR)).
% converting OR(P, AND(Q, R) to AND(OR(P, Q), OR(P, R)).
or_over_and_distributivity(NodeID) :-
node(NodeID, or, R, RightChild),
node(RightChild, and, P, Q),
deep_duplicate_node(R, NewR),
autogenerated_id(Q, NewR, NewOrID),
retract(node(NodeID, or, R, RightChild)),
retract(node(RightChild, and, P, Q)),
asserta(node(NodeID, and, NewOrID, RightChild)),
asserta(node(NewOrID, or, NewR, P)),
asserta(node(RightChild, or, R, Q)).
% applies a rule to all nodes on a tree. We have to fail so that
% backtracking happens automatically. Start at the top and work
% down (pre-order traversal).
apply_rule_to_tree_pre(void, _) :- !, fail.
apply_rule_to_tree_pre(NodeID, Rule) :- call_with_args(Rule, NodeID), fail.
% Recurse down the left sub-tree.
apply_rule_to_tree_pre(NodeID, Rule) :-
node(NodeID, _, LeftChild, _),
apply_rule_to_tree_pre(LeftChild, Rule).
% Recurse down the left right-tree.
apply_rule_to_tree_pre(NodeID, Rule) :-
node(NodeID, _, _, RightChild),
apply_rule_to_tree_pre(RightChild, Rule).
% Apply a rule to the tree, but start at leaves and move
% upwards (i.e. post-order traversal).
apply_rule_to_tree_post(void, _) :- !, fail.
% Recurse down the left sub-tree.
apply_rule_to_tree_post(NodeID, Rule) :-
node(NodeID, _, LeftChild, _),
apply_rule_to_tree_post(LeftChild, Rule).
% Recurse down the left right-tree.
apply_rule_to_tree_post(NodeID, Rule) :-
node(NodeID, _, _, RightChild),
apply_rule_to_tree_post(RightChild, Rule).
apply_rule_to_tree_post(NodeID, Rule) :- call_with_args(Rule, NodeID), fail.
% We need to keep reapplying negation elimination and
% De Morgan's law to a node until there is nothing left
% to eliminate.
negation_normal_form_node(NodeID) :-
double_negation_elimination(NodeID),
negation_normal_form_node(NodeID).
negation_normal_form_node(NodeID) :-
demorgan(NodeID),
negation_normal_form_node(NodeID).
% Apply the above to every node in the tree. Doing so will
% put the tree into negation normal form.
negation_normal_form(NodeID) :-
% Note that we apply the rules as we move into the tree,
% because we are 'pushing' the NOTs inwards.
apply_rule_to_tree_pre(NodeID, negation_normal_form_node).
move_ands_out(NodeID) :-
or_over_and_distributivity(NodeID),
% Keep bubbling ANDs up this part of the sub-tree
% until there are no more 'distributivities'. At
% this point the goal will fail, and we will move
% up to the next level of the tree.
apply_rule_to_tree_post(NodeID, move_ands_out).
% We have to fail so that backtracking happens automatically.
conjunctive_normal_form(NodeID) :- apply_rule_to_tree_pre(NodeID, implication_elimination), fail.
conjunctive_normal_form(NodeID) :- negation_normal_form(NodeID), fail.
% Apply distributivity to a node. Keep repeating until
% we can not perform distributivity on a node any more
% (i.e. we have moved the ANDs as high up as possible in
% the tree). Once this has happened, we move one level
% up the tree and repeat the same to the node, again
% moving ANDs as high up as possible. Eventually we will
% reach the root node, at which point we have 'bubbled'
% the ANDs all the way to the top of the tree. Note in
% particular when applying these rules we do it from
% the leaves of the tree upwards. This is in contrast to
% negation_normal_form/1 which applies rules from the
% roots down to the leaves. Because we are 'bubbling'
% the ANDs out from the centre of the formula, we want
% to start at the leaves and work outwards.
conjunctive_normal_form(NodeID) :- apply_rule_to_tree_post(NodeID, move_ands_out), fail.