-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcounting_sheeps.py
128 lines (102 loc) · 4.9 KB
/
counting_sheeps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from ultralytics import YOLO
import cv2 as cv
import numpy as np
import torch
import random
from tqdm import tqdm
import os
from drawing_bounds import detecting_area, draw_bounds
class DetectionModel:
def __init__(self, model_name):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.detection_model = self.load_model(model_name)
def load_model(self,model_name):
model = YOLO(model_name)
model.to(self.device)
return model
def __call__(self, frame, classes=18):
return self.detection_model.track(frame, persist=True, verbose=False, classes=(classes))
class Counting_LiveStocks:
def __init__(self, model_name, video_path, output_path=None):
self.cap = cv.VideoCapture(video_path)
total_frames = int(self.cap.get(cv.CAP_PROP_FRAME_COUNT))
self.process = tqdm(total=total_frames)
frame_height = int(self.cap.get(3))
frame_width = int(self.cap.get(4))
fps = int(self.cap.get(5))
size = (frame_height, frame_width)
output_folder = "./results/" + os.path.basename(video_path).split('.')[0]
output_file = "output_" + os.path.basename(video_path)
output_path_ = os.path.join(output_folder,output_file) if output_path == None else os.path.join(output_path,output_file)
if output_path != None and not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
self.output = cv.VideoWriter(output_path_,
cv.VideoWriter_fourcc(*'mp4v'),
fps, size)
self.detection_model = DetectionModel(model_name)
self.id_color = {}
self.font = cv.FONT_HERSHEY_SIMPLEX
self.org1 = (30, 35)
self.org2 = (30, 70)
self.fontScale = 1
self.color = (0, 0, 255)
self.thickness = 1
def plot_boxes(self, results, frame):
h,w,_ = frame.shape
# print(frame.shape)
in_sight_count = 0
for r in results:
result = r.boxes.cpu()
masks = r.masks
object_ids = result.id
# colors = []
if object_ids != None:
in_sight_count = len(object_ids)
for i in range(in_sight_count):
r = random.randint(50,100)
g = random.randint(50,100)
b = random.randint(50,100)
object_id = object_ids[i].item()
if object_id not in self.id_color.keys():
self.id_color[object_id] = (b,g,r)
for i in range(in_sight_count):
b = result.xyxy[i]
object_id = object_ids[i].item()
x1, x2 = int(b[0]), int(b[2])
y1, y2 = int(b[1]), int(b[3])
object_mask = masks[i].data.cpu().numpy().astype('uint8')
object_mask_resize = cv.resize(object_mask[0],(w,h))
object_mask_resize = object_mask_resize[y1:y2, x1:x2]
# Create a color mask
detected_object = frame[y1:y2, x1:x2]
color_mask = np.zeros(detected_object.shape, dtype=np.uint8)
color_mask[object_mask_resize != 0] = self.id_color[object_id]
# Apply the color mask to the image
detected_object[object_mask_resize != 0] = 0.3*detected_object[object_mask_resize == 1] + 0.7*color_mask[object_mask_resize == 1]
frame = draw_bounds(frame)
frame = cv.rectangle(frame, (5,5), (360,80), (238, 238, 175), -1)
frame = cv.putText(frame, 'Quantity in sight:'+str(in_sight_count), self.org1, self.font,
self.fontScale, self.color, self.thickness, cv.LINE_AA)
frame = cv.putText(frame, 'Total:'+str(len(self.id_color.keys())), self.org2, self.font,
self.fontScale, self.color, self.thickness, cv.LINE_AA)
# cv.imshow("test", frame)
# cv.waitKey(0)
return frame
def __call__(self):
while self.cap.isOpened():
success, frame = self.cap.read()
if not success:
break
detecting_area_frame = detecting_area(frame)
results = self.detection_model(detecting_area_frame)
annotated_frame = self.plot_boxes(results,frame)
self.output.write(annotated_frame)
self.process.update(1)
model_name = "yolov8x-seg.pt"
# video_path = "videos/Off ewe go sheep sorting.mp4"
video_path = "videos\sheeps2.mp4"
#output_path = "/results/example"
my_cls = Counting_LiveStocks(model_name, video_path)
my_cls()