-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolo_head.py
818 lines (676 loc) · 34.1 KB
/
solo_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from scipy import ndimage
from dataset import *
from functools import partial
class SOLOHead(nn.Module):
def __init__(self,
num_classes,
in_channels=256,
seg_feat_channels=256,
stacked_convs=7,
strides=[8, 8, 16, 32, 32],
scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)),
epsilon=0.2,
num_grids=[40, 36, 24, 16, 12],
cate_down_pos=0,
with_deform=False,
mask_loss_cfg=dict(weight=3),
cate_loss_cfg=dict(gamma=2,
alpha=0.25,
weight=1),
postprocess_cfg=dict(cate_thresh=0.2,
ins_thresh=0.5,
pre_NMS_num=50,
keep_instance=5,
IoU_thresh=0.5)):
super(SOLOHead, self).__init__()
self.num_classes = num_classes
self.seg_num_grids = num_grids
self.cate_out_channels = self.num_classes
self.in_channels = in_channels
self.seg_feat_channels = seg_feat_channels
self.stacked_convs = stacked_convs
self.strides = strides
self.epsilon = epsilon
self.cate_down_pos = cate_down_pos
self.scale_ranges = scale_ranges
self.with_deform = with_deform
self.mask_loss_cfg = mask_loss_cfg
self.cate_loss_cfg = cate_loss_cfg
self.postprocess_cfg = postprocess_cfg
# initialize the layers for cate and mask branch, and initialize the weights
self._init_layers()
self._init_weights()
self.lateral_convs = nn.ModuleList(
[nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) for _ in range(len(num_grids))])
# check flag
assert len(self.ins_head) == self.stacked_convs
assert len(self.cate_head) == self.stacked_convs
assert len(self.ins_out_list) == len(self.strides)
pass
# This function builds network layer for cate and ins branch
# it builds 4 self.var
# self.cate_head is nn.ModuleList 7 inter-layers of conv2d
# self.ins_head is nn.ModuleList 7 inter-layers of conv2d
# self.cate_out is 1 out-layer of conv2d
# self.ins_out_list is nn.ModuleList len(self.seg_num_grids) out-layers of conv2d, one for each fpn_feat
def _init_layers(self):
# define groupnorm
num_groups = 32
# initialize the two branch head modulelist
self.cate_head = nn.ModuleList([
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
),
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
),
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
),
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
),
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
),
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
),
nn.Sequential(
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256), # normalizes across all the channels
nn.ReLU()
)
])
self.cate_out = nn.Sequential(
nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1, bias=True),
nn.Sigmoid()
)
# instance mask head
self.ins_head = nn.ModuleList([
nn.Sequential(nn.Conv2d(258, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
),
nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
),
nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
),
nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
),
nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
),
nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
),
nn.Sequential(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.GroupNorm(num_groups, 256),
nn.ReLU()
)
])
# initialize the output layer
self.ins_out_list = nn.ModuleList([
nn.Sequential(
nn.Conv2d(256, num_grid ** 2, kernel_size=1, stride=1, padding=0, bias=True),
nn.Sigmoid()
)
for num_grid in self.seg_num_grids
])
# This function initialize weights for head network
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.GroupNorm):
nn.init.constant_(m.weight, 1) # check this
nn.init.constant_(m.bias, 0)
# Forward function should forward every levels in the FPN.
# this is done by map function or for loop
# Input:
# fpn_feat_list: backout_list of resnet50-fpn
# Output:
# if eval = False
# cate_pred_list: list, len(fpn_level), each (bz,C-1,S,S)
# ins_pred_list: list, len(fpn_level), each (bz, S^2, 2H_feat, 2W_feat)
# if eval==True
# cate_pred_list: list, len(fpn_level), each (bz,S,S,C-1) / after point_NMS
# ins_pred_list: list, len(fpn_level), each (bz, S^2, Ori_H, Ori_W) / after upsampling
def forward(self,
fpn_feat_list,
device,
eval=False):
new_fpn_list = self.NewFPN(fpn_feat_list) # stride[8,8,16,32,32]
assert new_fpn_list[0].shape[1:] == (256, 100, 136)
quart_shape = [new_fpn_list[0].shape[-2] * 2, new_fpn_list[0].shape[-1] * 2] # stride: 4
cate_pred_list, ins_pred_list = self.MultiApply(self.forward_single_level, new_fpn_list,
list(range(len(self.seg_num_grids))), device=device, eval=eval,
upsample_shape=quart_shape)
assert len(new_fpn_list) == len(self.seg_num_grids)
#print("Cate Pred List Shape = " + str(cate_pred_list[1].shape))
if eval:
assert cate_pred_list[1].shape[3] == self.cate_out_channels
else:
assert cate_pred_list[1].shape[1] == self.cate_out_channels
assert ins_pred_list[1].shape[1] == self.seg_num_grids[1] ** 2
assert cate_pred_list[1].shape[2] == self.seg_num_grids[1]
return cate_pred_list, ins_pred_list
# This function upsample/downsample the fpn level for the network
# In paper author change the original fpn level resolution
# Input:
# fpn_feat_list, list, len(FPN), stride[4,8,16,32,64]
# Output:
# new_fpn_list, list, len(FPN), stride[8,8,16,32,32]
def NewFPN(self, fpn_feat_list):
new_fpn_list = [None] * len(fpn_feat_list)
for i in range(len(fpn_feat_list)):
fpn_feat = self.lateral_convs[i](fpn_feat_list[i])
new_fpn_list[i] = fpn_feat
for i in range(len(fpn_feat_list) - 1, 0, -1):
new_fpn_list[i - 1] = new_fpn_list[i - 1] + F.interpolate(new_fpn_list[i], size=(
new_fpn_list[i - 1].shape[-2], new_fpn_list[i - 1].shape[-1]), mode='bilinear', align_corners=False)
new_fpn_list[0] = torch.nn.functional.interpolate(new_fpn_list[0], scale_factor=0.5)
new_fpn_list[-1] = torch.nn.functional.interpolate(new_fpn_list[-1], size=(25, 34))
return new_fpn_list
# This function forward a single level of fpn_featmap through the network
# Input:
# fpn_feat: (bz, fpn_channels(256), H_feat, W_feat)
# idx: indicate the fpn level idx, num_grids idx, the ins_out_layer idx
# Output:
# if eval==False
# cate_pred: (bz,C-1,S,S)
# ins_pred: (bz, S^2, 2H_feat, 2W_feat)
# if eval==True
# cate_pred: (bz,S,S,C-1) / after point_NMS
# ins_pred: (bz, S^2, Ori_H/4, Ori_W/4) / after upsampling
def forward_single_level(self, fpn_feat, idx, device="cpu", eval=False, upsample_shape=None, prev_feat=None):
# upsample_shape is used in eval mode
fpn_feat = fpn_feat.to(device)
fpn_feat_coords = self.add_xy_coords(fpn_feat, device)
cate_pred = fpn_feat
ins_pred = fpn_feat_coords
num_grid = self.seg_num_grids[idx]
cate_pred = F.interpolate(cate_pred, size=(num_grid, num_grid), mode='bilinear', align_corners=False)
for cat_layer in self.cate_head:
cate_pred = cat_layer(cate_pred)
for ins_layer in self.ins_head:
ins_pred = ins_layer(ins_pred)
cate_pred = self.cate_out(cate_pred)
ins_pred = self.ins_out_list[idx](ins_pred)
# in inference time, upsample the pred to (ori image size/4)
if eval == True:
if upsample_shape is not None:
ins_pred = F.interpolate(ins_pred, size=upsample_shape, mode='bilinear', align_corners=False)
## after upsampling the dimensions should be (bz, S^2, Ori_H/4, Ori_W/4)
cate_pred = self.points_nms(cate_pred).permute(0, 2, 3, 1)
# check flag
if eval == False:
ins_pred = F.interpolate(ins_pred, size=(2 * fpn_feat.shape[-2], 2 * fpn_feat.shape[-1]), mode='bilinear',
align_corners=False)
assert cate_pred.shape[1:] == (4, num_grid, num_grid)
assert ins_pred.shape[1:] == (num_grid ** 2, fpn_feat.shape[2] * 2, fpn_feat.shape[3] * 2)
else:
pass
del fpn_feat, fpn_feat_coords
if device == 'cuda':
torch.cuda.empty_cache()
return cate_pred, ins_pred
def add_xy_coords(self, fpn_feat, device):
batch_size, _, H, W = fpn_feat.shape
x_coords = torch.linspace(-1, 1, steps=W).view(1, 1, 1, W).expand(batch_size, 1, H, W).to(device)
y_coords = torch.linspace(-1, 1, steps=H).view(1, 1, H, 1).expand(batch_size, 1, H, W).to(device)
fpn_feat_with_coords = torch.cat([fpn_feat, x_coords, y_coords], dim=1)
del x_coords, y_coords
if device == 'cuda':
torch.cuda.empty_cache()
return fpn_feat_with_coords
# Credit to SOLO Author's code
# This function do a NMS on the heat map(cate_pred), grid-level
# Input:
# heat: (bz,C-1, S, S)
# Output:
# (bz,C-1, S, S)
def points_nms(self, heat, kernel=2):
# kernel must be 2
hmax = nn.functional.max_pool2d(
heat, (kernel, kernel), stride=1, padding=1)
keep = (hmax[:, :, :-1, :-1] == heat).float()
return heat * keep
# This function compute loss for a batch of images
# input:
# cate_pred_list: list, len(fpn_level), each (bz,C-1,S,S)
# ins_pred_list: list, len(fpn_level), each (bz, S^2, 2H_feat, 2W_feat)
# ins_gts_list: list, len(fpn_level), (bz, S^2, 2H_f, 2W_f)
# ins_ind_gts_list: list, len(fpn_level), (bz, S^2)
# cate_gts_list: list, len(fpn_level), (bz, S, S), {1,2,3}
# output:
# cate_loss, mask_loss, total_loss
def loss(self,
cate_pred_list,
ins_pred_list,
ins_gts_list,
ins_ind_gts_list,
cate_gts_list,
all_levels_one_batch,
device):
batch_size = ins_ind_gts_list[0].shape[0]
C = self.cate_out_channels
cate_loss_lambda = 10
mask_loss_lambda = 1
cate_preds = torch.zeros((batch_size * all_levels_one_batch, C)).to(device)
cate_gts = torch.zeros(batch_size * all_levels_one_batch).int().to(device)
prev_threshold = 0
divide_tensor = torch.zeros_like(cate_gts).to(device)
for batch_idx in range(batch_size):
for fpn_idx in range(len(self.seg_num_grids)):
new_threshold = prev_threshold + self.seg_num_grids[fpn_idx] ** 2
cate_gts[prev_threshold:new_threshold] = cate_gts_list[fpn_idx][batch_idx].int().flatten().to(device)
cate_preds[prev_threshold:new_threshold] = cate_pred_list[fpn_idx][batch_idx].flatten(start_dim=1).T.to(device)
divide_tensor[prev_threshold:new_threshold] = C * (self.seg_num_grids[fpn_idx] ** 2)
prev_threshold = new_threshold
focal_loss = self.FocalLoss(cate_preds, cate_gts, device) / batch_size
cate_loss = (focal_loss / divide_tensor).sum()
mask_loss = torch.tensor(0.0).to(device)
num_mask_loss = 0
for fpn_idx in range(len(self.seg_num_grids)):
mask_indices = ins_ind_gts_list[fpn_idx].flatten()
ins_pred = ins_pred_list[fpn_idx].flatten(end_dim=1).to(device)
ins_gt = ins_gts_list[fpn_idx].flatten(end_dim=1).to(device)
ins_pred = ins_pred[mask_indices == 1]
ins_gt = ins_gt[mask_indices == 1]
if ins_gt.shape[0] > 0:
mask_loss += self.DiceLoss(ins_pred, ins_gt).mean()
num_mask_loss += 1
if num_mask_loss > 0:
mask_loss /= num_mask_loss
total_loss = cate_loss_lambda * cate_loss + mask_loss_lambda * mask_loss
del cate_gts, cate_preds, focal_loss, divide_tensor
if device == 'cuda':
torch.cuda.empty_cache()
return cate_loss, mask_loss, total_loss
# This function compute the DiceLoss
# Input:
# mask_pred: (2H_feat, 2W_feat)
# mask_gt: (2H_feat, 2W_feat)
# Output: dice_loss, scalar
def DiceLoss(self, mask_pred, mask_gt):
epsilon = 1e-8
pq_product = mask_pred * mask_gt
p_squared = mask_pred * mask_pred
q_squared = mask_gt * mask_gt
num = 2 * pq_product.sum(dim=(-2, -1))
denom = p_squared.sum(dim=(-2, -1)) + q_squared.sum(dim=(-2, -1)) + epsilon
dice_loss = 1 - num / denom
del pq_product, p_squared, q_squared, num, denom
return dice_loss
# This function compute the cate loss
# Input:
# cate_preds: (num_entry, C-1)
# cate_gts: (num_entry,)
# Output: focal_loss, scalar
def FocalLoss(self, cate_preds, cate_gts, device):
epsilon = 1e-8
alpha = 0.9
gamma = self.cate_loss_cfg['gamma']
alpha_vector = alpha * torch.ones_like(cate_gts)
alpha_vector[cate_gts == 0] = 0.1
alpha_vector[cate_gts == 1] = 10.0
alpha_vector[cate_gts == 2] = 10.0
batch_indices = torch.arange(cate_preds.shape[0])
focal_loss = -alpha_vector * (1 - cate_preds[batch_indices, cate_gts]) ** gamma * torch.log(
cate_preds[batch_indices, cate_gts] + epsilon)
del batch_indices
if device == 'cuda':
torch.cuda.empty_cache()
return focal_loss
def MultiApply(self, func, *args, **kwargs):
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
# This function build the ground truth tensor for each batch in the training
# Input:
# ins_pred_list: list, len(fpn_level), each (bz, S^2, 2H_feat, 2W_feat)
# / ins_pred_list is only used to record feature map
# bbox_list: list, len(batch_size), each (n_object, 4) (x1y1x2y2 system)
# label_list: list, len(batch_size), each (n_object, )
# mask_list: list, len(batch_size), each (n_object, 800, 1088)
# Output:
# ins_gts_list: list, len(fpn), (bz, S^2, 2H_f, 2W_f)
# ins_ind_gts_list: list, len(fpn), (bz, S^2)
# cate_gts_list: list, len(fpn), (bz, S, S), {1,2,3}
def target(self,
ins_pred_list,
bbox_list,
label_list,
mask_list,
ins_gts_list,
device,
eval=False):
featmap_sizes = [(ins_pred.shape[-2] // 2, ins_pred.shape[-1] // 2) for ins_pred in ins_pred_list]
ins_gts_list, ins_ind_gts_list, cate_gts_list = self.target_single_img(bbox_list, label_list, mask_list,
ins_gts_list, device, featmap_sizes, eval)
# check flag
assert ins_gts_list[1][0].shape == (self.seg_num_grids[1] ** 2, 200, 272)
assert ins_ind_gts_list[1][0].shape == (self.seg_num_grids[1] ** 2,)
assert cate_gts_list[1][0].shape == (self.seg_num_grids[1], self.seg_num_grids[1])
return ins_gts_list, ins_ind_gts_list, cate_gts_list
# -----------------------------------
## process single image in one batch
# -----------------------------------
# input:
# gt_bboxes_raw: bz, n_obj, 4 (x1y1x2y2 system)
# gt_labels_raw: bz, n_obj,
# gt_masks_raw: bz, n_obj, H_ori, W_ori
# featmap_sizes: list of shapes of featmap
# output:
# ins_label_list: list, len: len(FPN), (bz, S^2, 2H_feat, 2W_feat)
# cate_label_list: list, len: len(FPN), (bz, S, S)
# ins_ind_label_list: list, len: len(FPN), (bz, S^2)
def target_single_img(self,
gt_bboxes_raw,
gt_labels_raw,
gt_masks_raw,
ins_label_list,
device,
featmap_sizes=None,
eval=False):
batch_size = len(gt_bboxes_raw)
n_obj = gt_bboxes_raw[0].shape[0]
H_ori, W_ori = gt_masks_raw[0].shape[1], gt_masks_raw[0].shape[2]
ins_ind_label_list = []
cate_label_list = []
for fpn_idx in range(len(featmap_sizes)):
H_featmap, W_featmap = featmap_sizes[fpn_idx]
S = self.seg_num_grids[fpn_idx]
grid_x, grid_y = torch.meshgrid(torch.arange(S), torch.arange(S), indexing='ij')
cate_label = torch.zeros((batch_size, S, S), dtype=torch.long).to(device)
ins_label_list[fpn_idx].zero_()
ins_ind_label = torch.zeros((batch_size, S * S), dtype=torch.long).to(device)
scale_x = W_featmap / W_ori
scale_y = H_featmap / H_ori
gt_bboxes_scaled = gt_bboxes_raw * torch.tensor([scale_x, scale_y, scale_x, scale_y])
for batch_idx in range(batch_size):
for obj_idx in range(n_obj):
bbox_sqrt_area = np.sqrt((gt_bboxes_raw[batch_idx, obj_idx, 2] - gt_bboxes_raw[batch_idx, obj_idx, 0]) * (
gt_bboxes_raw[batch_idx, obj_idx, 3] - gt_bboxes_raw[batch_idx, obj_idx, 1]))
if bbox_sqrt_area >= self.scale_ranges[fpn_idx][0] and bbox_sqrt_area <= self.scale_ranges[fpn_idx][1]:
bbox = gt_bboxes_scaled[batch_idx, obj_idx]
label = gt_labels_raw[batch_idx, obj_idx]
mask = gt_masks_raw[batch_idx, obj_idx]
mask_indices = torch.nonzero(mask)
if len(mask_indices) > 0:
center_of_mass = mask_indices.float().mean(dim=0)
center_y_raw, center_x_raw = center_of_mass[0].item(), center_of_mass[1].item()
else:
center_x_raw = (bbox[0] + bbox[2]) / 2
center_y_raw = (bbox[1] + bbox[3]) / 2
center_x = center_x_raw * W_featmap / W_ori
center_y = center_y_raw * H_featmap / H_ori
bbox_width = (bbox[2] - bbox[0]) * 0.2
bbox_height = (bbox[3] - bbox[1]) * 0.2
new_bbox_x1 = max(center_x - bbox_width / 2, 0)
new_bbox_x2 = min(center_x + bbox_width / 2, W_featmap)
new_bbox_y1 = max(center_y - bbox_height / 2, 0)
new_bbox_y2 = min(center_y + bbox_height / 2, H_featmap)
grid_x1 = int(new_bbox_x1 * S / W_featmap)
grid_x2 = int(new_bbox_x2 * S / W_featmap)
grid_y1 = int(new_bbox_y1 * S / H_featmap)
grid_y2 = int(new_bbox_y2 * S / H_featmap)
cate_label[batch_idx, grid_y1:grid_y2 + 1, grid_x1:grid_x2 + 1] = int(label.item())
grid_mask = (grid_x >= grid_x1) & (grid_x <= grid_x2) & (grid_y >= grid_y1) & (grid_y <= grid_y2)
grid_indices = torch.nonzero(grid_mask.reshape(-1)).squeeze()
if eval:
resized_mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(200, 272),
mode='bilinear', align_corners=False).squeeze().to(device)
else:
resized_mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(2 * H_featmap,
2 * W_featmap), mode='bilinear', align_corners=False).squeeze().to(device)
ins_label_list[fpn_idx][batch_idx, grid_indices] = resized_mask
ins_ind_label[batch_idx, grid_indices] = 1
cate_label_list.append(cate_label)
ins_ind_label_list.append(ins_ind_label)
# check flag
assert ins_label_list[1].shape == (batch_size, 1296, 200, 272)
assert ins_ind_label_list[1].shape == (batch_size, 1296)
assert cate_label_list[1].shape == (batch_size, 36, 36)
return ins_label_list, ins_ind_label_list, cate_label_list
# This function receive pred list from forward and post-process
# Input:
# ins_pred_list: list, len(fpn), (bz,S^2,Ori_H/4, Ori_W/4)
# cate_pred_list: list, len(fpn), (bz,S,S,C-1)
# ori_size: [ori_H, ori_W]
# Output:
# NMS_sorted_scores_list, list, len(bz), (keep_instance,)
# NMS_sorted_cate_label_list, list, len(bz), (keep_instance,)
# NMS_sorted_ins_list, list, len(bz), (keep_instance, ori_H, ori_W)
def PostProcess(self,
ins_pred_list,
cate_pred_list,
ori_size,
device):
all_levels_one_batch = 0
for S in self.seg_num_grids:
all_levels_one_batch += S * S
NMS_sorted_scores_list = []
NMS_sorted_cate_label_list = []
NMS_sorted_ins_list = []
batch_size = ins_pred_list[0].shape[0]
fpn_len = len(ins_pred_list)
for batch_idx in range(batch_size):
ins_pred_img = torch.zeros((all_levels_one_batch, int(ori_size[0]/4), int(ori_size[1]/4))).to(device)
cate_pred_img = torch.zeros((all_levels_one_batch, self.cate_out_channels)).to(device)
start_index = 0
for fpn_idx in range(fpn_len):
end_index = start_index + self.seg_num_grids[fpn_idx] ** 2
ins_pred_img[start_index:end_index] = ins_pred_list[fpn_idx][batch_idx]
cate_pred_img[start_index:end_index] = torch.flatten(cate_pred_list[fpn_idx][batch_idx], end_dim=1)
start_index = end_index
NMS_sorted_scores, NMS_sorted_cate_label, NMS_sorted_ins = self.PostProcessImg(ins_pred_img, cate_pred_img, ori_size, device)
NMS_sorted_scores_list.append(NMS_sorted_scores)
NMS_sorted_cate_label_list.append(NMS_sorted_cate_label)
NMS_sorted_ins_list.append(NMS_sorted_ins)
return NMS_sorted_scores_list, NMS_sorted_cate_label_list, NMS_sorted_ins_list
# This function Postprocess on single img
# Input:
# ins_pred_img: (all_level_S^2, ori_H/4, ori_W/4)
# cate_pred_img: (all_level_S^2, C-1)
# Output:
# sorted_scores_top_k: (keep_instance,)
# sorted_cate_top_k: (keep_instance,)
# sorted_ins_top_k: (keep_instance, ori_H, ori_W)
def PostProcessImg(self,
ins_pred_img,
cate_pred_img,
ori_size,
device):
k = self.postprocess_cfg['keep_instance']
mask_thresh = 0.1
ones_mask = torch.zeros_like(ins_pred_img).to(device)
ones_mask[ins_pred_img >= mask_thresh] = 1
max_cate_prob, max_cate_class = torch.max(cate_pred_img, dim=-1)
scores = (torch.sum(ins_pred_img * ones_mask, dim=(-2, -1)) / torch.sum(ones_mask, dim=(-2, -1))) * max_cate_prob
sorted_scores, indices = torch.sort(scores, descending=True)
sorted_ins = ins_pred_img[indices]
sorted_cate_class = max_cate_class[indices]
new_scores = self.MatrixNMS(sorted_ins, sorted_scores, device)
sorted_new_scores, indices = torch.sort(new_scores, descending=True)
sorted_ins = sorted_ins[indices]
sorted_cate_class = sorted_cate_class[indices]
sorted_scores_top_k = sorted_new_scores[:k]
sorted_cate_top_k = sorted_cate_class[:k]
sorted_ins_top_k = sorted_ins[:k, :, :]
sorted_ins_top_k = torch.nn.functional.interpolate(sorted_ins_top_k.unsqueeze(0), size=ori_size).squeeze(0)
return sorted_scores_top_k, sorted_cate_top_k, sorted_ins_top_k
# This function perform matrix NMS
# Input:
# sorted_ins: (n_act, ori_H/4, ori_W/4)
# sorted_scores: (n_act,)
# Output:
# decay_scores: (n_act,)
def MatrixNMS(self, sorted_ins, sorted_scores, device, method='linear', gauss_sigma=0.5):
n = len(sorted_scores)
sorted_masks = sorted_ins.reshape(n, -1).to(device)
intersection = torch.mm(sorted_masks, sorted_masks.T)
areas = sorted_masks.sum(dim=1).expand(n, n).to(device)
union = areas + areas.T - intersection
ious = (intersection / union).triu(diagonal=1)
ious_cmax = ious.max(0)[0].expand(n, n).T
if method == 'gauss':
decay = (torch.exp(-(ious ** 2 - ious_cmax ** 2) / gauss_sigma)).to(device)
else:
decay = ((1 - ious) / (1 - ious_cmax)).to(device)
decay = decay.min(dim=0)[0]
return sorted_scores * decay
# -----------------------------------
## The following code is for visualization
# -----------------------------------
# this function visualize the ground truth tensor
# Input:
# ins_gts_list: list, len(bz), list, len(fpn), (S^2, 2H_f, 2W_f)
# ins_ind_gts_list: list, len(bz), list, len(fpn), (S^2,)
# cate_gts_list: list, len(bz), list, len(fpn), (S, S), {1,2,3}
# color_list: list, len(C-1)
# img: (bz,3,Ori_H, Ori_W)
## self.strides: [8,8,16,32,32]
def PlotGT(self,
ins_gts_list,
ins_ind_gts_list,
cate_gts_list,
img):
num_images = img.shape[0]
img_np = img.permute(0, 2, 3, 1).cpu().numpy()
for i in range(num_images):
for feat_map in range(len(ins_gts_list[i])):
fig, ax = plt.subplots(1)
min_val = np.min(img_np[i])
max_val = np.max(img_np[i])
image_for_plotting = (img_np[i] - min_val) / (max_val - min_val)
ax.imshow(image_for_plotting)
masks_already_plotted = []
s = cate_gts_list[i][feat_map].shape[0]
for grid_idx in range(s * s):
if ins_ind_gts_list[i][feat_map][grid_idx] == 1:
already_plotted = False
for prev_mask in masks_already_plotted:
if torch.equal(ins_gts_list[i][feat_map][grid_idx], prev_mask):
already_plotted = True
if not already_plotted:
mask = ins_gts_list[i][feat_map][grid_idx]
category_label = cate_gts_list[i][feat_map][grid_idx % s, grid_idx // s].item()
mask_np = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(img.shape[-2], img.shape[-1]), mode='bilinear',
align_corners=False).squeeze(0).squeeze(0).cpu().numpy()
rgb_mask = np.zeros_like(img_np[i])
rgb_mask[:, :, category_label - 1] = mask_np
ax.imshow(rgb_mask, alpha=0.5)
masks_already_plotted.append(mask)
ax.set_title("FPN Recovery Plot for Image " + str(iter*2+i) + " at FPN Level " + str(feat_map))
os.makedirs("./testfig", exist_ok=True)
plt.savefig("./testfig/fpn_recovery_plot_" + str(iter*2+i) + "_fpn_level_" + str(feat_map) + ".png")
plt.show()
if i == 1:
break
# This function plot the inference segmentation in img
# Input:
# NMS_sorted_scores_list, list, len(bz), (keep_instance,)
# NMS_sorted_cate_label_list, list, len(bz), (keep_instance,)
# NMS_sorted_ins_list, list, len(bz), (keep_instance, ori_H, ori_W)
# color_list: ["jet", "ocean", "Spectral"]
# img: (bz, 3, ori_H, ori_W)
def PlotInfer(self,
NMS_sorted_scores_list,
NMS_sorted_cate_label_list,
NMS_sorted_ins_list,
img,
iter):
score_plotting_threshold = 0.4
num_images = img.shape[0]
keep_instance = NMS_sorted_ins_list[0].shape[0]
img_np = img.permute(0, 2, 3, 1).cpu().numpy()
for i in range(num_images):
fig, ax = plt.subplots(1)
min_val = np.min(img_np[i])
max_val = np.max(img_np[i])
image_for_plotting = (img_np[i] - min_val) / (max_val - min_val)
ax.imshow(image_for_plotting)
rgb_mask = np.zeros_like(img_np[i])
for j in range(1, keep_instance):
if NMS_sorted_scores_list[i][j] >= score_plotting_threshold:
category_label = NMS_sorted_cate_label_list[i][j]
rgb_mask[:, :, category_label - 1] += NMS_sorted_ins_list[i][j].detach().cpu().numpy()
ax.imshow(rgb_mask, alpha=0.5)
ax.set_title("SOLO Output Plot for Image " + str(iter * num_images + i))
os.makedirs("./testfig", exist_ok=True)
plt.savefig("./testfig/solo_output_plot_" + str(iter * num_images + i) + ".png")
plt.show()
from backbone import *
if __name__ == '__main__':
# file path and make a list
imgs_path = './data/hw3_mycocodata_img_comp_zlib.h5'
masks_path = './data/hw3_mycocodata_mask_comp_zlib.h5'
labels_path = "./data/hw3_mycocodata_labels_comp_zlib.npy"
bboxes_path = "./data/hw3_mycocodata_bboxes_comp_zlib.npy"
paths = [imgs_path, masks_path, labels_path, bboxes_path]
# load the data into data.Dataset
dataset = BuildDataset(paths)
## Visualize debugging
# --------------------------------------------
# build the dataloader
# set 20% of the dataset as the training data
full_size = len(dataset)
train_size = int(full_size * 0.8)
test_size = full_size - train_size
# random split the dataset into training and testset
# set seed
torch.random.manual_seed(1)
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
# push the randomized training data into the dataloader
batch_size = 2
train_build_loader = BuildDataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
train_loader = train_build_loader.loader()
test_build_loader = BuildDataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
test_loader = test_build_loader.loader()
resnet50_fpn = Resnet50Backbone()
solo_head = SOLOHead(num_classes=4) ## class number is 4, because consider the background as one category.
# loop the image
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for iter, data in enumerate(train_loader, 0):
img, mask_list, label_list, bbox_list = [data[i] for i in range(len(data))]
# fpn is a dict
backout = resnet50_fpn(img)
fpn_feat_list = list(backout.values())
# make the target
## demo
cate_pred_list, ins_pred_list = solo_head.forward(fpn_feat_list, eval=False)
ins_gts_list, ins_ind_gts_list, cate_gts_list = solo_head.target(ins_pred_list,
bbox_list,
label_list,
mask_list)
solo_head.loss(cate_pred_list, ins_pred_list, ins_gts_list, ins_ind_gts_list, cate_gts_list)
mask_color_list = ["jet", "ocean", "Spectral"]
solo_head.PlotGT(ins_gts_list, ins_ind_gts_list, cate_gts_list, img)