-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTCGA-RNA-seq.R
1364 lines (1155 loc) · 48.3 KB
/
TCGA-RNA-seq.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
setwd("C:/Users/11146/Desktop/R包/TCGA")
#TCGA表达矩阵TCGA表达矩阵中的ENSG_ID包含了编码基因、非编码基因以及假基因
#对mRNA或lncRNA单独研究,这时候就必须将原始表达矩阵做拆分
#制作包含geneID和gene type信息的mRNA和lncRNA清单
#下载GDC官方注释ENSG_ID文件 https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files
#读取GDC官方的V22版本ENS注释文件:
gcodev22 <- read.table("gencode.gene.info.v22.tsv",header = T,row.names = 1,check.names = F)
#行名(ENSG_ID)、gene_name列以及gene_type列即为我们所需
#gene_name用于ID转换,gene_type用于提取mRNA和lncRNA,现在我们提取这三列,并合并为一个数据框。
#提取gene name列:
gname <- subset(gcodev22,select = c(1,6))#提取第1,6列
gname <- cbind(gene_stable_ID=row.names(gname), gname)#把gname的行名设置为第一列,列名为gene_stable_ID
row.names(gname)=NULL#去掉原行名
head(gname)
#拆分为仅包含mRNA和lncRNA的两个独立数据框。
#mRNA在gene_type中对应的是protein_coding,但lncRNA在gene_type中不止对应lncRNA,相关信息我们可以从gencode数据库获取。
#根据gene_type分别提取lncRNA和mRNA对应的ENSID和geneID:
#lncRNA的type来自https://www.gencodegenes.org/pages/biotypes.html的lncRNA部分
lncRNA <- c(
'3prime_overlapping_ncRNA',
'antisense',
'bidirectional_promoter_lncRNA',
'lincRNA',
'macro_lncRNA',
'non_coding',
'processed_transcript',
'sense_intronic',
'sense_overlapping')
mRNA <- c("protein_coding")
#分别生成mRNA、lncRNA的ENSID、geneID和type对应list:
lncRNA_list <- gname[gname$gene_type %in% lncRNA,]#%in%逻辑运算符,检查左边元素是否出现在右边中,若有,返T,数据框保存返回T的数据
mRNA_list <- gname[gname$gene_type %in% mRNA,]
head(lncRNA_list)
head(mRNA_list)
#保存TCGA原始矩阵
save(lncRNA_list,mRNA_list,file = c("gene_ID_list.Rdata"))
load("gene_ID_list.Rdata")
#读取Xena下载的KICH(嫌色细胞癌)表达量矩阵(counts):
#或者用TCGAbiolink下载,后续不用log转换
exp <- read.table("TCGA-KICH.htseq_counts.tsv",header = T,row.names = 1,check.names = F)
exp <- as.matrix(exp)#将数据转换成矩阵
exp[1:6,1:6]#查看前6个
#将表达量矩阵还原为原始counts
exp <- 2^exp-1
#取整数
exp <- round(exp)
exp[1:6,1:6]
dim(exp)#获取行=基因数,列=样本数
#去掉最后5行:
exp <- exp[-(length(exp[,1]):(length(exp[,1])-4)),]
#数据过滤,TCGA为了保证geneID在不同癌症的一致性,导致很多样本的表达量为0
exp_filtered <- exp[apply(exp, 1, function(x) sum(x > 1) > 89*0.5), ]#保留75%的样本基因数大于1;过滤的标准可以是保留50%,exp大于10的基因
dim(exp_filtered)
#分别取表达矩阵和mRNA/lncRNA_list的ENSID交集:
#mRNA交集:
mRNA <- intersect(rownames(exp_filtered),mRNA_list$gene_stable_ID)
#lncRNA交集:
lncRNA <- intersect(rownames(exp_filtered),lncRNA_list$gene_stable_ID)
#查看过滤后的mRNA和lncRNA数量(交集部分):
length(mRNA)
length(lncRNA)
#mRNA表达矩阵:从表达矩阵中提取交集部分(mRNA):
mRNA_exp <- exp_filtered[mRNA,]
#lncRNA表达矩阵:从表达矩阵中提取交集部分(lncRNA):
lncRNA_exp <- exp_filtered[lncRNA,]
dim(mRNA_exp)
dim(lncRNA_exp)#行数和交集gene数相等,确认无误,表达矩阵拆分完成
#保存仅包含mRNA和lncRNA的两个独立表达矩阵
save(mRNA_exp,lncRNA_exp,mRNA_list,lncRNA_list,file = c('mRNA_lncRNA_ENSID_exp.Rdata'))
#样本分组,对TCGA样本名称的第14、15位判断样本属于“tumor” or “normal”
#TCGA-02-0001-01C-01D-0182-01;0-9为“tumor”,10-19为“normal”
#提取样本(列名)中第14-15位的字符串并查看
library(stringr)
table(str_sub(colnames(exp_filtered),14,15))
#不是所有数据都有tumor和normal的样本
#创建分组(normal和tumor),并将其转化为因子指定顺序:
group_list = ifelse(as.numeric(str_sub(colnames(exp_filtered),14,15)) < 10,'tumor','normal')
group_list = factor(group_list,levels = c("normal","tumor"))
table(group_list)
#保存矩阵跟分组
save(exp_filtered,group_list,file = c("TCGA_KICH_exp.Rdata"))
#主流用raw_count进行差异分析,RPKM、FPKM已经过时
#DESeq2要求用raw_count,然后要做的是多个样本间同一特征比较前的均一化,并不适合样本内比较,不同基因的表达水平
#RPKM、FPKM、TPM是样本内的所有特征做均一化(基因长度均一化、测序长度均一化),并不适合样本间差异分析
#基因长度归一化的原因:同样表达水平下,某基因长度越长,对应得到的reads数越多。归一化后「同一样本的不同基因表达水平」间具有可比性;
#测序深度归一化的原因:不同样本的mRNA reads总量有高有底,归一化后「不同样本的基因表达水平」间具有可比性。
#DESeq2差异分析
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("DESeq2")
library(DESeq2)
#导入整理好的表达矩阵
load("TCGA_KICH_exp.Rdata")
#创建表达量矩阵样本名和分组一一对应的数据框(colData)
colData <- data.frame(row.names =colnames(exp_filtered),condition=group_list)
head(colData)
#用函数DESeqDataSetFromMatrix()构建DESeqDataSet对象(dds),包括存储输入值、计算中间值、标准化处理等
dds <- DESeqDataSetFromMatrix(countData = exp_filtered,colData = colData, design = ~ condition)
#构建广义线性模型
dds <- DESeq(dds)
#因子设置tumor在前,normal在后
res <- results(dds,contrast = c("condition",rev(levels(group_list))))
res <- as.data.frame(res)
head(res)
#保存差异分析数据:
save(dds,res,file = c("TCGA_KICH_DESeq2.Rdata"))
#DESeq2包中三种数据标准化方法:
#blind=T则每个样本之间自动计算标准化因子
vsd <- vst(dds, blind=FALSE)#variance stabilizing transformations
rld <- rlog(dds, blind=FALSE)#regularized logarithm-rlog,常用但计算时间长
ntd <- normTransform(dds)#常规log2(n + 1)
rld <- as.data.frame(assay(rld))#获取标化后的矩阵
#保存矩阵
save(rld,file=c("TCGA_KICH_count_transformation.Rdata"))
load("TCGA_KICH_count_transformation.Rdata")
#简单可视化
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("tinyarray")
library(tinyarray)
library(dplyr)
library(pheatmap)
#PCA,用标化的rld
KICH_PCA <- draw_pca(rld,group_list)
KICH_PCA
#volano plot,火山图用count
#生成显著上下调gene标签列:
res$group <- case_when(res$log2FoldChange > 1 & res$pvalue < 0.05 ~ "Up",
res$log2FoldChange < -1 & res$pvalue < 0.05 ~ "Down",
abs(res$log2FoldChange) <= 1 ~ "None",
res$pvalue >= 0.05 ~ "None")
head(res)
#heatmap,热图也一样用count
#选取标准化后平均表达量Top10绘制:
select <- order(rowMeans(counts(dds,normalized=TRUE)),decreasing=TRUE)[1:100]
KICH_heatmap <- draw_heatmap(rld[select,],
group_list,
scale_before = F,
legend = T,
annotation_legend = T,
color_an = c("pink", "#8DA0CB"))
KICH_heatmap
#选取所有显著上下调gene绘制:
select2 <- rownames(res)[res$group !="None"]
KICH_heatmap2 <- draw_heatmap(rld[select2,],
group_list,
scale_before = F,
legend = T,
annotation_legend = T,
color_an = c("#97cb00", "#ff938a"),
color = (grDevices::colorRampPalette(c("orange", "white","purple")))(100))
KICH_heatmap2
#保存图片data:
save(KICH_PCA,KICH_volcano,KICH_heatmap,KICH_heatmap2,file = c("TCGA_KICH_DESeq2_plot.Rdata"))
#ensembl gene ID对应的gene name
#geneID转换
load("mRNA_lncRNA_ENSID_exp.Rdata")
#行名顺序匹配
#按照mRNA矩阵行名的顺序来匹配mRNA_list中gene_stable_ID的顺序,对mRNA_list进行顺序重排并取交集:
a <- rownames(mRNA_exp)
b <- mRNA_list$gene_stable_ID
mRNA_ID_match <- mRNA_list[match(a,b),]
head(mRNA_ID_match)
dim(mRNA_ID_match)
#lncRNA同理
c <- rownames(lncRNA_exp)
d <- lncRNA_list$gene_stable_ID
lncRNA_ID_match <- lncRNA_list[match(c,d),]
head(lncRNA_ID_match)
dim(lncRNA_ID_match)
#行名不能重复,去除重复geneID
#去掉mRNA表达矩阵中有着相同gene name的不同ENSG_ID:
#duplicated函数用来判断
dp_mRNA <- duplicated(mRNA_ID_match$gene_name)
table(dp_mRNA)
#但我们需要的是不重复的gene(逻辑值为FALSE),因此做一个逻辑非运算(即给出相反逻辑值,将不重复的gene返回为TRUE)
n = !dp_mRNA
#根据逻辑值取子集,筛选mRNA表达矩阵中返回逻辑值为TRUE的行以及全部列
dp_mRNA_exp <- mRNA_exp[n,]
#在完成顺序匹配的mRNA_ID_match中进行相同规则筛选
dp_mRNA_ID_match <- mRNA_ID_match[n,]
dim(dp_mRNA_exp)
dim(dp_mRNA_ID_match)#检查去重
#修改表达矩阵中行名的ENSID为gene name(已完成顺序匹配和去重复)
rownames(dp_mRNA_exp) <- dp_mRNA_ID_match$gene_name
dp_mRNA_exp[1:6,1:4]#gene ID转换完成
dp_lncRNA <- duplicated(lncRNA_ID_match$gene_name)
table(dp_lncRNA)
n=!dp_lncRNA
dp_lncRNA_exp <- lncRNA_exp[n,]
dp_lncRNA_ID_match <- lncRNA_ID_match[n,]
dim(dp_lncRNA_exp)
dim(dp_lncRNA_ID_match)
rownames(dp_lncRNA_exp) <- dp_lncRNA_ID_match$gene_name
dp_lncRNA_exp[1:6,1:4]
#保存
save(dp_mRNA_exp,dp_lncRNA_exp,file = c("mRNA_lncRNA_geneID_exp.Rdata"))
#读取临床信息表格和载入表达矩阵:
cl_KICH <- data.table::fread("TCGA-KICH.GDC_phenotype.tsv")
#拆分完的mRNA和lncRNA表达矩阵并已经转换geneID
load("mRNA_lncRNA_geneID_exp.Rdata")
cl_KICH <- as.data.frame(cl_KICH)
#用mRNA表达矩阵
mRNA_exp_clean <- dp_mRNA_exp
dim(cl_KICH)
#提取临床信息表格中所需要的列名(需要根据自己的癌症背景知识挑选);
##常规选择:如病人ID、生死状态、性别、人种、临床分期等
##创建所需列名的分组文件:
col_group <- c(
"submitter_id.samples",#样本ID
"submitter_id",#病人ID
"days_to_death.demographic",#死亡时间
"days_to_last_follow_up.diagnoses",#最后随访时间
"vital_status.demographic",#生or死
"tumor_stage.diagnoses",#临床分期
"age_at_initial_pathologic_diagnosis"#初始病例诊断年龄
#"more......性别、人种等等"
)
#筛选列名:
cl_KICH2 <- cl_KICH[,col_group]
dim(cl_KICH)#临床信息184个样本
dim(mRNA_exp_clean)#表达矩阵89个样本
#首先,我们需要去掉表达矩阵中的正常样本(样本编号第14-15位字符串≥10为normal):
##查看tumor和normal样本数量:
table(str_sub(colnames(mRNA_exp_clean),14,15))#表达矩阵中tumor样本65个,normal样本24个
#创建tumor和normal的分组文件:
sample_group <- ifelse(as.numeric(str_sub(colnames(mRNA_exp_clean),14,15)) < 10,"tumor","normal")
#筛选肿瘤样本:
mRNA_exp_clean2 <- mRNA_exp_clean[,sample_group == c("tumor")]
dim(mRNA_exp_clean2)#只剩65个肿瘤样本了
#将临床表格中样本行名的顺序按照表达矩阵列名进行匹配:
cl_KICH3 <- cl_KICH2[match(colnames(mRNA_exp_clean2),cl_KICH2$submitter_id.samples),]
dim(cl_KICH3)#匹配完也只剩65个肿瘤样本
#检查顺序是否一致以及一一对应:
head(colnames(mRNA_exp_clean2))
head(cl_KICH3$submitter_id.samples)
identical(colnames(mRNA_exp_clean2),cl_KICH3$submitter_id.samples)
#把临床信息表格第一列作为行名:
rownames(cl_KICH3) = cl_KICH3[,1]
cl_KICH3 <- cl_KICH3[,-1]
View(cl_KICH3)
View(mRNA_exp_clean2)
######把生存状态转换为0(Alive)和1(Dead):
event <- cl_KICH3$vital_status.demographic
event <- ifelse(event =="Alive",0,1)
#添加event列
cl_KICH3$event <- event
table(cl_KICH3$event)
#先把所有缺失的NA替换为0:
colnames(cl_KICH3)
#把死亡时间和最后随访时间缺失值替换为0
for (i in 1:ncol(cl_KICH3[,2&3])){
cl_KICH3[,i][is.na(cl_KICH3[,i])] <- 0
}
#把记录时间有问题的样本整行剔除:
cl_KICH4 <- cl_KICH3[!rownames(cl_KICH3) %in% c("TCGA-KN-8430-01A","TCGA-KL-8343-01A"),]
#同样删除表达矩阵的单列
mRNA_exp_clean3 <- mRNA_exp_clean2[,!colnames(mRNA_exp_clean2) %in% c("TCGA-KN-8430-01A","TCGA-KL-8343-01A")]
#检查是否一一匹配:
identical(colnames(mRNA_exp_clean3),rownames(cl_KICH4))
#根据死亡时间和最后随访时间计算OS_time
cl_KICH4$OS_time <- (as.numeric(cl_KICH4[,2])+as.numeric(cl_KICH4[,3]))#两者相加得出生存时间
#诊断KICH年龄分组
age <- cl_KICH4$age_at_initial_pathologic_diagnosis
#查看病理诊断年龄区间:
range(age)
#把年龄分为青年(17-34)、中年(35-54)、老年(55-86)三组:
age <- ifelse(age<=34,"young",
ifelse(age<=54,"middle","old"))
cl_KICH4$age <- age
table(cl_KICH4$age)
######按某基因的高低表达分组:
#选某个关键基因
gene <- c("HSF1")
#用中位数/均数划分表达量高低:常见用中位数
#as.integer转化为整数
cl_KICH4$gene <- ifelse(as.integer(mRNA_exp_clean3[gene,]) > median(as.integer(mRNA_exp_clean3[gene,])), "high", "low")
cl_KICH4$gene <- ifelse(as.integer(mRNA_exp_clean3[gene,]) > mean(as.integer(mRNA_exp_clean3[gene,])), "high", "low")
cl_KICH4[1:6,7:10]
######保存整理完成临床信息和表达矩阵
save(cl_KICH4,mRNA_exp_clean3,file = c("survival_data.Rdata"))
library(survminer)
library(survival)
load("survival_data.Rdata")
colnames(cl_KICH4)
#探究stage分期对KICH生存率的影响
#用survival包survfit函数拟合生存曲线
fit_stage <- survfit(Surv(OS_time, event) ~ tumor_stage.diagnoses, data = cl_KICH4)
#绘图
ggsurvplot(fit_stage, cl_KICH4,
cencor.shape = "|", cencor.size = 4,#删失点形状,default“+”
conf.int = T, conf.int.style = "ribbon", #置信区间类型,默认"ribbon",可选"step(虚线)"
conf.int.alpha = 0.2,#置信区间不透明度调节
pval = T,#p值
palette = "lancet",
ggtheme =theme_bw(),
legend = "right",
legend.labs = c("stage Ⅰ","stage Ⅱ","stage Ⅲ","stage Ⅳ"),#
xlab = "OS_time(days)",
ylab = "Survival Probablity",
title = "Survival Curves",
break.x.by = 1000,
break.y.by = 0.2,
#add.all = T,添加总生存曲线,即所有病人不分组
surv.median.line = "hv")#添加中位生存时间线,“hv”、“h”、“v”,v为绘制垂直线,h为绘制水平线
#添加风险表或删失事件图:
p <- ggsurvplot(fit_stage, cl_KICH4,
cencor.shape = "|", cencor.size = 4,#删失点形状,default“+”
conf.int = T, conf.int.style = "ribbon", #置信区间类型,默认"ribbon",可选"step(虚线)"
conf.int.alpha = 0.2,#置信区间不透明度调节
pval = T,#p值
palette = "lancet",
ggtheme =theme_bw(),
legend = "right",
legend.labs = c("stage Ⅰ","stage Ⅱ","stage Ⅲ","stage Ⅳ"),#
xlab = "OS_time(days)",
ylab = "Survival Probablity",
title = "Survival Curves",
break.x.by = 1000,
break.y.by = 0.2,
#add.all = T,添加总生存曲线,即所有病人不分组
surv.median.line = "hv",
risk.table = TRUE,#风险表添加
risk.table.col = "strata",#风险表颜色跟随
risk.table.height = 0.2,#生存表高度占据画幅百分比(区间0-1,1为只显示生存表)
risk.table.y.text = FALSE, #隐藏风险表y轴标签
ncensor.plot = TRUE, #删失事件图绘制
ncensor.plot.height = 0.15 #删失事件图高度占据画幅百分比(区间0-1,同上)
)#添加中位生存时间线,“hv”、“h”、“v”,v为绘制垂直线,h为绘制水平线
# add method to grid.draw
grid.draw.ggsurvplot <- function(x){
survminer:::print.ggsurvplot(x, newpage = FALSE)
}
ggsave("survial curve.png", p, width = 8, height = 10, dpi = 600)
#探究age对KICH生存率的影响
fit_age <- survfit(Surv(OS_time, event) ~ age, data = cl_KICH4)
ggsurvplot(
fit_age,
data = cl_KICH4,
censor.shape="|", censor.size = 4,
conf.int = TRUE,
conf.int.style = "ribbon",
conf.int.alpha = 0.2,
pval = TRUE,
palette = "lancet",
#surv.median.line = "hv",
ggtheme =theme_bw(),
legend = "right",
legend.labs = c("Middle","Old","Young"),
xlab = "OS_time(days)",
ylab = "Survival Probablity",
title = "Survival Curves",
break.x.by = 1000,
break.y.by = 0.2,
risk.table = TRUE,#风险表添加
risk.table.col = "strata",
risk.table.height = 0.2,
risk.table.y.text = FALSE
)
#探究单个gene对KICH生存率的影响
#上面选的关键基因是HSF1
fit_gene_HSF1 <- surv_fit(Surv(OS_time,event)~gene,cl_KICH4)
ggsurvplot(
fit_gene_HSF1,
data = cl_KICH4,
censor.shape="|", censor.size = 4,
conf.int = TRUE,
conf.int.style = "ribbon",
conf.int.alpha = 0.2,
pval = TRUE,
palette = "lancet",
#surv.median.line = "hv",#某组的中位生存时间还没达到,所以无法添加中位生存时间线
ggtheme =theme_bw(),
legend = "top",
legend.labs = c("High","Low"),
xlab = "OS_time(days)",
ylab = "Survival probablity",
title = "Survival curves",
break.x.by = 1000,
break.y.by = 0.2,
risk.table = TRUE,
risk.table.col = "strata",
risk.table.height = 0.2,
risk.table.y.text = FALSE
)
#HSF1对生存率无显著影响,换成ARHGAP33
rownames(mRNA_exp_clean3)
gene <- c("ARHGAP33")
cl_KICH4$gene <- ifelse(mRNA_exp_clean3[gene,] > median(mRNA_exp_clean3[gene,]),"High","Low")
cl_KICH4$gene[1:10]
fit_gene_ARHGAP33 <- surv_fit(Surv(OS_time,event)~gene,cl_KICH4)
ggsurvplot(
fit_gene_ARHGAP33,
data = cl_KICH4,
censor.shape="|", censor.size = 4,
conf.int = TRUE,
conf.int.style = "ribbon",
conf.int.alpha = 0.2,
pval = TRUE,
palette = "lancet",
#surv.median.line = "hv",#某组的中位生存时间还没达到,所以无法添加中位生存时间线
ggtheme =theme_bw(),
legend = "top",
legend.labs = c("High","Low"),
xlab = "OS_time(days)",
ylab = "Survival probablity",
title = "Survival curves",
break.x.by = 1000,
break.y.by = 0.2,
risk.table = TRUE,
risk.table.col = "strata",
risk.table.height = 0.2,
risk.table.y.text = FALSE
)
#ARHGAP33高表达会影响KICH患者生存率
#cox回归
cox_age <- coxph(Surv(OS_time, event) ~ age_at_initial_pathologic_diagnosis, data = cl_KICH4)
cox_age
#看看ARHGAP33在cox回归有没有意义
gene <- c("ARHGAP33")
cl_KICH4$gene <- ifelse(mRNA_exp_clean3[gene,] > median(mRNA_exp_clean3[gene,]),"High","Low")
cox_gene_ARHGAP33 <- coxph(Surv(OS_time, event) ~ gene, data = cl_KICH4)
summary(cox_gene_ARHGAP33)#没意义,除了p值,exp(coef)即HR风险比也要关注
#使用exp连续变量
cl_KICH4$gene <- mRNA_exp_clean3[gene,]
cox_gene_ARHGAP33 <- coxph(Surv(OS_time, event) ~ gene, data = cl_KICH4)
summary(cox_gene_ARHGAP33)
ggsurvplot(survfit(cox_gene_ARHGAP33), cl_KICH4)#用survfit计算cox的生存函数
#批量对所有基因进行生存分析,批量计算HR值等
#apply函数(x矩形,1=对行操作,2=对列操作,3=对每个元素进行操作)
cox_results <- apply(
mRNA_exp_clean3,1,function(x){
cl_KICH4$gene <- ifelse(x>median(x),"High","Low")
cox_gene <- coxph(Surv(OS_time, event) ~ gene, data = cl_KICH4)
beta <- coef(cox_gene) #回归系数,即coef值
se <- sqrt(diag(vcov(cox_gene))) #标准误
HR <- exp(beta) #HR(Hazard Ratio/风险比)值计算
HRse <- HR * se
tmp <- round(cbind(coef = beta,
se = se,
z = beta/se, #z值,即Wald test统计量
p = 1 - pchisq((beta/se)^2, 1),#显著性P值
HR = HR, #风险比
HRse = HRse,
HRz = (HR - 1) / HRse,
HRp = 1 - pchisq(((HR - 1)/HRse)^2, 1),
#95%CI:
ower_95 = exp(beta - qnorm(.975, 0, 1) * se),
upper_95 = exp(beta + qnorm(.975, 0, 1) * se)), 3)
return(tmp["geneLow",])
}
)
cox_results <- t(cox_results)
head(cox_results)[,1:3]
#查看统计学上有显著差异的基因数量:
table(cox_results[,4] < 0.05)
#提取有显著性差异的基因列表:
cox_results_sig5 <- cox_results[cox_results[,4]<0.05,]
head(cox_results_sig5)[,1:3]
#批量计算log rank p值
#用survdiff函数计算多条生存曲线之间差异,得到卡方chisq值
logrank_p <- apply(
mRNA_exp_clean3,1,function(x){
cl_KICH4$gene <- ifelse(x>median(x),"High","Low")
diff <- survdiff(Surv(OS_time, event) ~ gene, data=cl_KICH4)#默认logrank检验
p <- 1 - pchisq(diff$chisq, length(diff$n) - 1)
#pchisq 函数是用来计算卡方分布的累积分布函数值 (cumulative distribution function)
#length(diff$n) - 1 是卡方分布的自由度,表示可以自由变化的变量数
return(p)
}
)
#按p值从小到大排序,并将其转化为数据框:
logrank_p_order <- as.data.frame(sort(logrank_p),header = T)
#提取显著影响的基因--对应行名
logrank_p_sig5 <- rownames(logrank_p_order)[logrank_p_order<0.05]
logrank_p_sig1 <- rownames(logrank_p_order)[logrank_p_order<0.01]
head(logrank_p_sig1)
length(logrank_p_sig1)
##采取批量绘图方式,将有显著性差异Top6 基因绘制生存曲线图:
#lapply函数是对list每个向量进行操作,apply是对行或列进行操作
genes_top6 <- c(logrank_p_sig1[1:6])
p_logrank_top6 <- lapply(genes_top6, function(x){
cl_KICH4$gene <- ifelse(mRNA_exp_clean3[x,] > median(mRNA_exp_clean3[x,]),"High","Low")
fit <- survfit(Surv(OS_time, event) ~ gene, data=cl_KICH4)
ggsurvplot(
fit,
data = cl_KICH4,
censor.shape="|", censor.size = 4,
conf.int = TRUE,
conf.int.style = "ribbon",
conf.int.alpha = 0.2,
pval = TRUE,
palette = "lancet",#npg
surv.median.line = "hv",
ggtheme =theme_bw(),
legend = "top",
legend.labs = c("High","Low"),
xlab = "OS_time(days)",
ylab = "Survival Probablity",
title = paste0(x," Signature"),
break.x.by = 1000,
break.y.by = 0.2,
risk.table = TRUE,
risk.table.col = "strata",
risk.table.height = 0.2,
risk.table.y.text = FALSE
)
}
)
#拼图:
p_logrank_top6 <- arrange_ggsurvplots(
p_logrank_top6,
print = T,
title = "Survival Curves",
ncol = 3,
nrow = 2,
risk.table.height = 0.25
)
ggsave("logrank_top6.pdf", p_logrank_top6, width = 15, height = 10, dpi = 600)
#还可以和logrank检验结果的p值取交集:
#提取显著差异的基因名
cox_results_sig_gene <- rownames(cox_results_sig)
head(cox_results_sig_gene)
#intersect函数提取两个数组共有的元素
int_p5 <- intersect(logrank_p_sig5,cox_results_sig_gene)
int_p1 <- intersect(logrank_p_sig1,cox_results_sig_gene)
head(int_p5)
length(int_p5)
head(int_p1)
length(int_p1)
colnames(cl_KICH4)
surv_int_gene <- lapply(int_p1,function(x){
cl_KICH4$gene <- ifelse(mRNA_exp_clean3[x,] > median(mRNA_exp_clean3[x,]),"High","Low")
fit_int_gene <- survfit(Surv(OS_time, event) ~ gene, data = cl_KICH4)
ggsurvplot(
fit_int_gene,
data = cl_KICH4,
censor.shape="|", censor.size = 4,
conf.int = TRUE,
conf.int.style = "ribbon",
conf.int.alpha = 0.2,
pval = TRUE,
palette = "lancet",#npg
surv.median.line = "hv",
ggtheme =theme_bw(),
legend = "top",
legend.labs = c("High","Low"),
xlab = "OS_time(days)",
ylab = "Survival Probablity",
title = paste0(x," Signature"),
break.x.by = 1000,
break.y.by = 0.2,
risk.table = TRUE,
risk.table.col = "strata",
risk.table.height = 0.1,
risk.table.y.text = FALSE
)
}
)
surv_int_gene <- arrange_ggsurvplots(
surv_int_gene,
print = T,
title = "Survival Curves",
ncol = 7,
nrow = 3,
risk.table.height = 0.25
)
ggsave("surv_int_gene.pdf", surv_int_gene, width = 30, height = 20, dpi = 600)
save(int_p1,file = c("int_gene.Rdata"))
####ensemble_ID转换成gene_symbol
load("TCGA_KICH_DESeq2.Rdata")
head(res)
#去除ensemble_ID的版本号
library(stringr)
res$ensembl_gene_id=unlist(str_split(row.names(res),"[.]",simplify=T))[,1]
res[1:3,7]
#去除后三行没有ensemble_ID的数据
res <- res[1:(nrow(res)-3),]#前面去除了后面就不用去除
#对基因进行注释-获取gene_symbol,用bioMart对ensembl_id转换成gene_symbol
#BiocManager::install("biomaRt", force = T)
library(biomaRt)
mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))
save(mart,file = "mart.Rdata")
load("mart.Rdata")
hg_symbols<- getBM(attributes=c('ensembl_gene_id','hgnc_symbol'),
filters= 'ensembl_gene_id',
values = res$ensembl_gene_id,
mart = mart)
#xy是两个表合并的列名,两个表数据匹配合并,并保留两个表的所有列
res <- merge(res, hg_symbols, by.x = "ensembl_gene_id", by.y = "ensembl_gene_id")
#检查是否有重复基因
any(duplicated(colnames(res)))
#将空值转成缺失值,然后去除没有注释的基因,去除4271个基因
res[res==""] <- NA
res <- na.omit(res)
save(res,file = c("res_symbol.Rdata"))
#KEGG富集分析
library(dplyr)
library(org.Hs.eg.db)#人类基因注释包
library(clusterProfiler)#富集分析包括id转换、go注释
library(ggplot2)
library(RColorBrewer)
#添加上下调基因分组标签:
res$group <- case_when(res$log2FoldChange > 2 & res$pvalue < 0.05 ~ "Up",
res$log2FoldChange < -2 & res$pvalue < 0.05 ~ "Down",
abs(res$log2FoldChange) <= 2 ~ "None",
res$pvalue >= 0.05 ~ "None")
head(res)
#分别筛选上调基因、下调基因或所有差异基因(上调+下调):
up <- res$hgnc_symbol[res$group=="Up"]#差异上调
down <- res$hgnc_symbol[res$group=="Down"]#差异下调
diff <- c(up,down)#所有差异基因
head(up)
head(down)
#用clusterProfiler包进行gene_symbol转换ENTREZID,或者直接ensembl_id转成ENTREZID
##使用函数bitr(基于org.Hs.eg.db包):
columns(org.Hs.eg.db)
#up:
up_entrez <- bitr(up,
fromType = "SYMBOL",#现有的ID类型 "SYMBOL"或者"ENSEMBL"
toType = "ENTREZID",#需转换的ID类型
OrgDb = "org.Hs.eg.db")
#2.13% fail to map
#down(同上):
down_entrez <- bitr(down,
fromType = "SYMBOL",
toType = "ENTREZID",
OrgDb = "org.Hs.eg.db")
#0.26% fail to map
#diff(同上):
diff_entrez <- bitr(diff,
fromType = "SYMBOL",
toType = "ENTREZID",
OrgDb = "org.Hs.eg.db")
#1.04% fail to map
head(diff_entrez)
save(diff_entrez,file = c("diff_entrez.Rdata"))
#小部分没有mapping到很正常
#KEGG富集分析,我们以总差异基因(diff_entrez)为例:
KEGG_diff <- enrichKEGG(gene = diff_entrez$ENTREZID,
organism = "hsa",#物种,Homo sapiens (human)
pvalueCutoff = 0.05,
qvalueCutoff = 0.05)
KEGG_result <- KEGG_diff@result
#保存富集结果:
save(KEGG_diff,KEGG_result,file = c("KEGG_diff.Rdata"))
#探索/调出选定的KEGG通路
#红色为富集到该通路的差异基因
browseKEGG(KEGG_diff, "hsa04610")
load("KEGG_diff.Rdata")
#富集可视化
library(enrichplot)
#条形图
barplot(
KEGG_diff,
x = "Count", #or "GeneRatio"
color = "pvalue", #or "p.adjust" and "qvalue"
showCategory = 20,#显示前top20
font.size = 12,
title = "KEGG enrichment barplot",
label_format = 30 #超过30个字符串换行
)
#气泡图
dotplot(
KEGG_diff,
x = "GeneRatio",
color = "p.adjust",
title = "Top 20 of Pathway Enrichment",
showCategory = 20,
label_format = 30
)
#用-log10p或者-log10q来绘图
#先提取富集结果表前Top20:
KEGG_top20 <- KEGG_result[1:20,]
#指定绘图顺序(转换为因子):
KEGG_top20$pathway <- factor(KEGG_top20$Description,levels = rev(KEGG_top20$Description))
#Top20富集数目条形图:
mytheme <- theme(axis.title = element_text(size = 13),
axis.text = element_text(size = 11),
plot.title = element_text(size = 14,
hjust = 0.5,
face = "bold"),
legend.title = element_text(size = 13),
legend.text = element_text(size = 11))
p <- ggplot(data = KEGG_top20,
aes(x = Count,
y = pathway,
fill = -log10(pvalue)))+
scale_fill_distiller(palette = "RdPu",direction = 1) +
geom_bar(stat = "identity",width = 0.8) +
theme_bw() +
labs(x = "Number of Gene",
y = "pathway",
title = "KEGG enrichment barplot") + mytheme
p
#Top20显著富集条形图:
p1 <- ggplot(data = KEGG_top20,
aes(x = -log10(pvalue),
y = pathway,
fill = Count)) +
scale_fill_distiller(palette = "Blues",direction = 1) +
geom_bar(stat = "identity",width = 0.8) +
theme_bw() +
labs(x = "-log10(pvalue)",
y = "pathway",
title = "KEGG enrichment barplot") +mytheme
p1
#Top20显著性气泡图:
#将pathway按照p值排列:
p2 <- ggplot(data = KEGG_top20,
aes(x = Count,
y = pathway))+
geom_point(aes(size = Count,
color = -log10(pvalue)))+ # 气泡大小及颜色设置
theme_bw()+
scale_color_distiller(palette = "Spectral",direction = 1) +
labs(x = "Gene Number",
y = "",
title = "Dotplot of Enriched KEGG Pathways",
size = "Count") +
mytheme
p2
#将pathway按照gene number(Count)数排列:
p3 <- ggplot(data = KEGG_top20,
aes(x = Count,
y = reorder(pathway,Count)))+ # 用reorder将pathway按照Count重排
geom_point(aes(size = Count,
color = -log10(pvalue)))+
theme_bw()+
scale_color_distiller(palette = "Spectral",direction = 1) +
labs(x = "Gene Number",
y = "",
title = "Dotplot of Enriched KEGG Pathways",
size = "Count") +
mytheme
p3
#展现Rich Factor
#富集因子(Rich Factor)计算:
#Rich Factor = GenRatio/BgRatio
top20_rf <- apply(KEGG_top20,1,function(x){
GeneRatio <- eval(parse(text = x["GeneRatio"]))
BgRatio <- eval(parse(text = x["BgRatio"]))
KEGG_top20_rf <- round(GeneRatio/BgRatio,2)
KEGG_top20_rf
})
head(top20_rf)
KEGG_top20$Rich_Factor <- top20_rf
#富集因子版显著性气泡图绘制:
p3 <- ggplot(data = KEGG_top20,
aes(x = Rich_Factor, # X轴用富集因子来映射
y = pathway))+
geom_point(aes(size = Count,
color = -log10(pvalue)))+
theme_bw()+
scale_color_distiller(palette = "Spectral",direction = -1) +
labs(x = "Rich Factor",
y = "",
title = "Dotplot of Enriched KEGG Pathways",
size = "Gene Number") +
mytheme
p3
##GO富集分析
#在GO富集分析中有三个Ontology
#分子功能MF(Molecular Function)、细胞组分CC(Cellular Component)及生物过程BP(Biological Process)
load("diff_entrez.Rdata")
library(dplyr)
library(stringr)
library(org.Hs.eg.db)
library(clusterProfiler)
library(ggplot2)
library(RColorBrewer)
GO_MF_diff <- enrichGO(gene = diff_entrez$ENTREZID,
OrgDb = org.Hs.eg.db,
ont = "MF", #GO分支,"BP"(生物学过程)、"MF"(分子功能)和"CC"(细胞组分)。或者“all”合并
pAdjustMethod = "BH", #多重假设检验矫正方法
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = T) #是否将gene ID映射到gene name
GO_MF_result <- GO_MF_diff@result
GO_BP_diff <- enrichGO(gene = diff_entrez$ENTREZID,
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = T)
GO_BP_result <- GO_BP_diff@result
GO_CC_diff <- enrichGO(gene = diff_entrez$ENTREZID,
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = T)
GO_CC_result <- GO_CC_diff@result
GO_all_diff <- enrichGO(gene = diff_entrez$ENTREZID,
OrgDb = org.Hs.eg.db,
ont = "all",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = T)
GO_all_result <- GO_all_diff@result
##保存GO富集结果:
save(GO_MF_diff,GO_CC_diff,GO_BP_diff,GO_all_diff,file = c("GO_diff.Rdata"))
save(GO_MF_result,GO_BP_result,GO_CC_result,GO_all_result,file = c("GO_diff_result.Rdata"))
load("GO_diff_result.Rdata")
#####快速可视化探索
#BiocManager::install("topGO")
library(topGO)
library(enrichplot)
library(ggplot2)
#GO有向无环图绘制
goplot(GO_MF_diff) #来自enrichplot
plotGOgraph(GO_MF_diff) #来自topGO
#GO富集条形图:
barplot(GO_MF_diff,x = "Count", #or "GeneRatio"
color = "pvalue", #or "p.adjust" and "qvalue"
showCategory = 20,#显示前top20(enrichResult按照p值排序)
font.size = 12,title = "Cellular Component enrichment barplot",
label_format = 30) #超过30个字符串换行
#GO富集气泡图:
dotplot(GO_MF_diff,x = "GeneRatio",color = "p.adjust",
title = "Top 20 of GO CC terms Enrichment",showCategory = 20,
label_format = 30)
#富集网络图:
#pairwise_termsim函数是计算两者相似性,两个GO terms之间存在overlap即表明两者相关性,overlap越高相关性越高
edo <- pairwise_termsim(GO_MF_diff)
emapplot(edo,layout = "kk", #布局形式
showCategory = 30) #展示GO terms的数量
####使用ggplot2进行可视化:
#取前top20,并简化命名:
MF_20 <- GO_MF_result[1:20,]
CC_20 <- GO_CC_result[1:20,]
BP_20 <- GO_BP_result[1:20,]
#自定义主题
mytheme <- theme(axis.title = element_text(size = 13),
axis.text = element_text(size = 11),
plot.title = element_text(size = 14,hjust = 0.5,face = "bold"),
legend.title = element_text(size = 13),
legend.text = element_text(size = 11))
#在MF的Description中存在过长字符串,我们将长度超过50的部分用...代替:
MF_20$Description <- str_trunc(MF_20$Description,width = 50,side = "right")
MF_20$Description
#指定绘图顺序(转换为因子):
MF_20$term <- factor(MF_20$Description,levels = rev(MF_20$Description))
CC_20$term <- factor(CC_20$Description,levels = rev(CC_20$Description))
BP_20$term <- factor(BP_20$Description,levels = rev(BP_20$Description))
#GO富集柱形图:
GO_bar <- function(x){
y <- get(x)
ggplot(data = y,aes(x = Count,y = term,fill = -log10(pvalue))) +
scale_y_discrete(labels = function(y) str_wrap(y, width = 50) ) + #label换行,部分term描述太长
geom_bar(stat = "identity",width = 0.8) +
labs(x = "Gene Number",y = "Description",title = paste0(x," of GO enrichment barplot")) +
theme_bw() +
mytheme
}
p_bar_MF <- GO_bar("MF_20")+scale_fill_distiller(palette = "Blues",direction = 1)
p_bar_BP <- GO_bar("BP_20")+scale_fill_distiller(palette = "Reds",direction = 1)
p_bar_CC <- GO_bar("CC_20")+scale_fill_distiller(palette = "Greens",direction = 1)