-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathClosest pair of points - Geometrical Algorithms
124 lines (94 loc) · 2.18 KB
/
Closest pair of points - Geometrical Algorithms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#include <iostream>
#include <float.h>
#include <stdlib.h>
#include <math.h>
using namespace std;
struct Point
{
int x, y;
};
int compareX(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->x != p2->x) ? (p1->x - p2->x) : (p1->y - p2->y);
}
int compareY(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->y != p2->y) ? (p1->y - p2->y) : (p1->x - p2->x);
}
float dist(Point p1, Point p2)
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y)
);
}
float bruteForce(Point P[], int n)
{
float min = FLT_MAX;
for (int i = 0; i < n; ++i)
for (int j = i+1; j < n; ++j)
if (dist(P[i], P[j]) < min)
min = dist(P[i], P[j]);
return min;
}
float min(float x, float y)
{
return (x < y)? x : y;
}
float stripClosest(Point strip[], int size, float d)
{
float min = d; // Initialize the minimum distance as d
for (int i = 0; i < size; ++i)
for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
if (dist(strip[i],strip[j]) < min)
min = dist(strip[i], strip[j]);
return min;
}
float closestUtil(Point Px[], Point Py[], int n)
{
if (n <= 3)
return bruteForce(Px, n);
int mid = n/2;
Point midPoint = Px[mid];
Point Pyl[mid];
Point Pyr[n-mid];
int li = 0, ri = 0;
for (int i = 0; i < n; i++)
{
if ((Py[i].x < midPoint.x || (Py[i].x == midPoint.x && Py[i].y < midPoint.y)) && li<mid)
Pyl[li++] = Py[i];
else
Pyr[ri++] = Py[i];
}
float dl = closestUtil(Px, Pyl, mid);
float dr = closestUtil(Px + mid, Pyr, n-mid);
float d = min(dl, dr);
Point strip[n];
int j = 0;
for (int i = 0; i < n; i++)
if (abs(Py[i].x - midPoint.x) < d)
strip[j] = Py[i], j++;
return stripClosest(strip, j, d);
}
float closest(Point P[], int n)
{
Point Px[n];
Point Py[n];
for (int i = 0; i < n; i++)
{
Px[i] = P[i];
Py[i] = P[i];
}
qsort(Px, n, sizeof(Point), compareX);
qsort(Py, n, sizeof(Point), compareY);
return closestUtil(Px, Py, n);
}
// Driver program to test above functions
int main()
{
Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};
int n = sizeof(P) / sizeof(P[0]);
cout << "The smallest distance is " << closest(P, n);
return 0;
}