@@ -22,21 +22,14 @@ def normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
22
22
23
23
def uniform (shape , minval = 0.0 , maxval = 1.0 , dtype = None , seed = None ):
24
24
dtype = dtype or floatx ()
25
- ov_type = OPENVINO_DTYPES [dtype ]
26
- seed = draw_seed (seed )
27
- if isinstance (seed , OpenVINOKerasTensor ):
28
- seed1 , seed2 = convert_to_numpy (seed )
25
+ seed_val = draw_seed (seed )
26
+ if isinstance (seed_val , OpenVINOKerasTensor ):
27
+ seed_data = convert_to_numpy (seed_val )
29
28
else :
30
- seed1 , seed2 = draw_seed (seed ).data
31
- minval_const = ov_opset .constant (minval , dtype = dtype )
32
- maxval_const = ov_opset .constant (maxval , dtype = dtype )
33
- if isinstance (shape , tuple ):
34
- shape = list (shape )
35
- output_shape_const = ov_opset .constant (shape , dtype = Type .i32 )
36
- random_uniform = ov_opset .random_uniform (
37
- output_shape_const , minval_const , maxval_const , ov_type , seed1 , seed2
38
- )
39
- return OpenVINOKerasTensor (random_uniform .output (0 ))
29
+ seed_data = seed_val .data
30
+ rng = np .random .default_rng (seed_data )
31
+ random_values = rng .uniform (minval , maxval , size = shape ).astype (dtype )
32
+ return OpenVINOKerasTensor (ov_opset .constant (random_values ).output (0 ))
40
33
41
34
42
35
def categorical (logits , num_samples , dtype = "int64" , seed = None ):
0 commit comments