-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassification.py
224 lines (173 loc) · 8.26 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from __future__ import annotations
from typing import Any
import json
from datetime import datetime, timedelta
from statistics import mean, stdev
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import StratifiedKFold, ParameterGrid
from iidaka_transformer import IidakaTransformer
from pipeline import Pipeline
import seaborn as sns
import matplotlib.pylab as plt
import numpy as np
def calculate_mean_time(times: list[timedelta]) -> timedelta:
# Can't do normal mean with timedelta objects
time_sum = timedelta()
for time in times:
time_sum += time
return time_sum / len(times)
def nested_grid_search_cv(X, y, pipeline_steps, step_param_grids, outer_cv = None, inner_cv = None, random_state = None, plot_prefix=None):
outer_cv = outer_cv or StratifiedKFold(n_splits=5, shuffle=True, random_state=random_state)
inner_cv = inner_cv or StratifiedKFold(n_splits=5, shuffle=True, random_state=random_state)
results_and_params = []
i = 0
tune_times = []
train_times = []
predict_times = []
for train_index, test_index in outer_cv.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
tune_start_time = datetime.now()
results, pipeline = grid_search_cv(X=X_train, y=y_train, pipeline_steps=pipeline_steps, step_param_grids=step_param_grids, cv=inner_cv, random_state=random_state)
tune_end_time = datetime.now()
y_pred = pipeline.predict(X=X_test)
predict_end_time = datetime.now()
tune_time = tune_end_time - tune_start_time
predict_time = predict_end_time - tune_end_time
tune_times.append(tune_time)
train_times.append(results["mean_train_time"])
predict_times.append(predict_time)
results_and_params.append({
"results": {
"report": classification_report(y_true=y_test, y_pred=y_pred, output_dict=True, zero_division=0),
"confusion_matrix": confusion_matrix(y_true=y_test, y_pred=y_pred)
},
"params": pipeline.params,
"trained_pipeline_steps": pipeline.steps,
"parameter_tuning_time": tune_time,
"mean_train_time": results["mean_train_time"],
"predict_time": predict_time
})
if plot_prefix:
if pipeline.steps[0].__class__ == IidakaTransformer:
transformer = pipeline.steps[0]
masked = np.zeros_like(transformer.cohens_d)
np.add(masked, transformer.cohens_d, out=masked, where=transformer.cohens_d > transformer.effect_size_threshold)
plt.clf()
sns.heatmap(masked)
plt.title(f"{np.count_nonzero(masked)} features chosen, ES threshold = {transformer.effect_size_threshold}")
plt.savefig(f"plots/{plot_prefix}-{i}-iidaka")
elif pipeline.plot_prefix:
pipeline.plot_prefix = f"{plot_prefix}-{i}-{pipeline.plot_prefix}"
else:
pipeline.plot_prefix = f"{plot_prefix}-{i}"
pipeline.train_labels = y_train
pipeline.test_labels = y_test
if pipeline.is_plottable():
pipeline.plot()
i += 1
accuracies = [ result["results"]["report"]["accuracy"] for result in results_and_params ]
accuracy_mean = mean(accuracies)
accuracy_stdev = stdev(accuracies, xbar=accuracy_mean)
mean_tuning_time = calculate_mean_time(tune_times)
mean_train_time = calculate_mean_time(train_times)
mean_predict_time = calculate_mean_time(predict_times)
summary = {
"accuracy_mean": accuracy_mean,
"accuracy_stdev": accuracy_stdev,
"mean_tuning_time": mean_tuning_time,
"mean_train_time": mean_train_time,
"mean_predict_time": mean_predict_time
}
return results_and_params, summary
def grid_search_cv(X, y, pipeline_steps, step_param_grids, cv = None, random_state = None):
cv = cv or StratifiedKFold(n_splits=5, shuffle=True, random_state=random_state)
param_dict = {}
for step in pipeline_steps:
if step_param_grids.get(step.__name__):
param_list = list(ParameterGrid(step_param_grids[step.__name__]))
param_dict[step.__name__] = param_list
params_list = list(ParameterGrid(param_dict))
train_times = []
best_accuracy = 0
best_params = None
best_results = None
best_summary = None
for params in params_list:
pipeline_inner = Pipeline(steps=pipeline_steps, params=params)
results, summary = cross_validate(X=X, y=y, pipeline=pipeline_inner, cv=cv, random_state=random_state)
avg_accuracy = summary["accuracy_mean"]
if params == params_list[0]:
print(f"grid_search_cv will take aproximately {(summary['mean_train_time'] + summary['mean_predict_time'])*cv.get_n_splits()*len(params_list)}")
if avg_accuracy > best_accuracy:
best_accuracy = avg_accuracy
best_params = params
best_results = results
best_summary = summary
train_times.append(summary['mean_train_time'])
pipeline = Pipeline(steps=pipeline_steps, params=best_params)
pipeline.fit(X_train=X, y_train=y)
mean_train_time = calculate_mean_time(train_times)
results = {
"summary": best_summary,
"best_results": best_results,
"mean_train_time": mean_train_time
}
return results, pipeline
def cross_validate(X, y, pipeline: Pipeline, cv = None, random_state = None, plot_prefix=None):
cv = cv or StratifiedKFold(n_splits=5, shuffle=True, random_state=random_state)
results = []
i = 0
train_times = []
predict_times = []
for train_index, test_index in cv.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
train_start_time = datetime.now()
pipeline.fit(X_train=X_train, y_train=y_train)
train_end_time = datetime.now()
y_pred = pipeline.predict(X=X_test)
predict_end_time = datetime.now()
train_time = train_end_time - train_start_time
predict_time = predict_end_time - train_end_time
train_times.append(train_time)
predict_times.append(predict_time)
results.append({
"report": classification_report(y_true=y_test, y_pred=y_pred, output_dict=True, zero_division=0),
"confusion_matrix": confusion_matrix(y_true=y_test, y_pred=y_pred),
"train_time": train_time,
"predict_time": predict_time
})
if plot_prefix:
if pipeline.plot_prefix:
pipeline.plot_prefix = f"{plot_prefix}-{i}-{pipeline.plot_prefix}"
else:
pipeline.plot_prefix = f"{plot_prefix}-{i}"
pipeline.train_labels = y_train
pipeline.test_labels = y_test
if pipeline.is_plottable():
pipeline.plot()
i += 1
accuracies = [ result["report"]["accuracy"] for result in results ]
accuracy_mean = mean(accuracies)
accuracy_stdev = stdev(accuracies, xbar=accuracy_mean)
mean_train_time = calculate_mean_time(train_times)
mean_predict_time = calculate_mean_time(predict_times)
summary = {
"accuracy_mean": accuracy_mean,
"accuracy_stdev": accuracy_stdev,
"mean_train_time": mean_train_time,
"mean_predict_time": mean_predict_time,
"params": pipeline.params
}
return results, summary
def write_results_to_file(filename: str, summary: dict[str, Any], results: list, parameter_grid: dict[str, Any], asd_count: int, td_count: int):
with open(filename, 'a') as fp:
fp.write("\n============================================================\n")
fp.write(f"Date: {datetime.now().isoformat()}\n")
fp.write(f"Counts: {asd_count} ASD subjects, {td_count} TD subjects.\n")
fp.write("Summary:\n" + json.dumps(summary, default=str) + "\n")
for result in results:
fp.write(json.dumps(result, default=str) + "\n")
fp.write("parameter grid:\n" + json.dumps(parameter_grid, default=str) + "\n")
fp.write("\n============================================================\n")