-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchar-rnn-classification.ipynb.txt
912 lines (912 loc) · 91.1 KB
/
char-rnn-classification.ipynb.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](https://i.imgur.com/eBRPvWB.png)\n",
"\n",
"# Practical PyTorch: Classifying Names with a Character-Level RNN\n",
"\n",
"We will be building and training a basic character-level RNN to classify words. A character-level RNN reads words as a series of characters - outputting a prediction and \"hidden state\" at each step, feeding its previous hidden state into each next step. We take the final prediction to be the output, i.e. which class the word belongs to.\n",
"\n",
"Specifically, we'll train on a few thousand surnames from 18 languages of origin, and predict which language a name is from based on the spelling:\n",
"\n",
"```\n",
"$ python predict.py Hinton\n",
"(-0.47) Scottish\n",
"(-1.52) English\n",
"(-3.57) Irish\n",
"\n",
"$ python predict.py Schmidhuber\n",
"(-0.19) German\n",
"(-2.48) Czech\n",
"(-2.68) Dutch\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Recommended Reading\n",
"\n",
"I assume you have at least installed PyTorch, know Python, and understand Tensors:\n",
"\n",
"* http://pytorch.org/ For installation instructions\n",
"* [Deep Learning with PyTorch: A 60-minute Blitz](http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html) to get started with PyTorch in general\n",
"* [jcjohnson's PyTorch examples](https://github.com/jcjohnson/pytorch-examples) for an in depth overview\n",
"* [Introduction to PyTorch for former Torchies](https://github.com/pytorch/tutorials/blob/master/Introduction%20to%20PyTorch%20for%20former%20Torchies.ipynb) if you are former Lua Torch user\n",
"\n",
"It would also be useful to know about RNNs and how they work:\n",
"\n",
"* [The Unreasonable Effectiveness of Recurrent Neural Networks](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) shows a bunch of real life examples\n",
"* [Understanding LSTM Networks](http://colah.github.io/posts/2015-08-Understanding-LSTMs/) is about LSTMs specifically but also informative about RNNs in general"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preparing the Data\n",
"\n",
"Included in the `data/names` directory are 18 text files named as \"[Language].txt\". Each file contains a bunch of names, one name per line, mostly romanized (but we still need to convert from Unicode to ASCII).\n",
"\n",
"We'll end up with a dictionary of lists of names per language, `{language: [names ...]}`. The generic variables \"category\" and \"line\" (for language and name in our case) are used for later extensibility."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['../data/names/Arabic.txt', '../data/names/Chinese.txt', '../data/names/Czech.txt', '../data/names/Dutch.txt', '../data/names/English.txt', '../data/names/French.txt', '../data/names/German.txt', '../data/names/Greek.txt', '../data/names/Irish.txt', '../data/names/Italian.txt', '../data/names/Japanese.txt', '../data/names/Korean.txt', '../data/names/Polish.txt', '../data/names/Portuguese.txt', '../data/names/Russian.txt', '../data/names/Scottish.txt', '../data/names/Spanish.txt', '../data/names/Vietnamese.txt']\n"
]
}
],
"source": [
"import glob\n",
"\n",
"all_filenames = glob.glob('../data/names/*.txt')\n",
"print(all_filenames)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Slusarski\n"
]
}
],
"source": [
"import unicodedata\n",
"import string\n",
"\n",
"all_letters = string.ascii_letters + \" .,;'\"\n",
"n_letters = len(all_letters)\n",
"\n",
"# Turn a Unicode string to plain ASCII, thanks to http://stackoverflow.com/a/518232/2809427\n",
"def unicode_to_ascii(s):\n",
" return ''.join(\n",
" c for c in unicodedata.normalize('NFD', s)\n",
" if unicodedata.category(c) != 'Mn'\n",
" and c in all_letters\n",
" )\n",
"\n",
"print(unicode_to_ascii('Ślusàrski'))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"n_categories = 18\n"
]
}
],
"source": [
"# Build the category_lines dictionary, a list of names per language\n",
"category_lines = {}\n",
"all_categories = []\n",
"\n",
"# Read a file and split into lines\n",
"def readLines(filename):\n",
" lines = open(filename).read().strip().split('\\n')\n",
" return [unicode_to_ascii(line) for line in lines]\n",
"\n",
"for filename in all_filenames:\n",
" category = filename.split('/')[-1].split('.')[0]\n",
" all_categories.append(category)\n",
" lines = readLines(filename)\n",
" category_lines[category] = lines\n",
"\n",
"n_categories = len(all_categories)\n",
"print('n_categories =', n_categories)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we have `category_lines`, a dictionary mapping each category (language) to a list of lines (names). We also kept track of `all_categories` (just a list of languages) and `n_categories` for later reference."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']\n"
]
}
],
"source": [
"print(category_lines['Italian'][:5])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Turning Names into Tensors\n",
"\n",
"Now that we have all the names organized, we need to turn them into Tensors to make any use of them.\n",
"\n",
"To represent a single letter, we use a \"one-hot vector\" of size `<1 x n_letters>`. A one-hot vector is filled with 0s except for a 1 at index of the current letter, e.g. `\"b\" = <0 1 0 0 0 ...>`.\n",
"\n",
"To make a word we join a bunch of those into a 2D matrix `<line_length x 1 x n_letters>`.\n",
"\n",
"That extra 1 dimension is because PyTorch assumes everything is in batches - we're just using a batch size of 1 here."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"# Just for demonstration, turn a letter into a <1 x n_letters> Tensor\n",
"def letter_to_tensor(letter):\n",
" tensor = torch.zeros(1, n_letters)\n",
" letter_index = all_letters.find(letter)\n",
" tensor[0][letter_index] = 1\n",
" return tensor\n",
"\n",
"# Turn a line into a <line_length x 1 x n_letters>,\n",
"# or an array of one-hot letter vectors\n",
"def line_to_tensor(line):\n",
" tensor = torch.zeros(len(line), 1, n_letters)\n",
" for li, letter in enumerate(line):\n",
" letter_index = all_letters.find(letter)\n",
" tensor[li][0][letter_index] = 1\n",
" return tensor"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Columns 0 to 12 \n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"\n",
"Columns 13 to 25 \n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"\n",
"Columns 26 to 38 \n",
" 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"\n",
"Columns 39 to 51 \n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"\n",
"Columns 52 to 56 \n",
" 0 0 0 0 0\n",
"[torch.FloatTensor of size 1x57]\n",
"\n"
]
}
],
"source": [
"print(letter_to_tensor('J'))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([5, 1, 57])\n"
]
}
],
"source": [
"print(line_to_tensor('Jones').size())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating the Network\n",
"\n",
"Before autograd, creating a recurrent neural network in Torch involved cloning the parameters of a layer over several timesteps. The layers held hidden state and gradients which are now entirely handled by the graph itself. This means you can implement a RNN in a very \"pure\" way, as regular feed-forward layers.\n",
"\n",
"This RNN module (mostly copied from [the PyTorch for Torch users tutorial](https://github.com/pytorch/tutorials/blob/master/Introduction%20to%20PyTorch%20for%20former%20Torchies.ipynb)) is just 2 linear layers which operate on an input and hidden state, with a LogSoftmax layer after the output.\n",
"\n",
"![](https://i.imgur.com/Z2xbySO.png)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import torch.nn as nn\n",
"from torch.autograd import Variable\n",
"\n",
"class RNN(nn.Module):\n",
" def __init__(self, input_size, hidden_size, output_size):\n",
" super(RNN, self).__init__()\n",
" \n",
" self.input_size = input_size\n",
" self.hidden_size = hidden_size\n",
" self.output_size = output_size\n",
" \n",
" self.i2h = nn.Linear(input_size + hidden_size, hidden_size)\n",
" self.i2o = nn.Linear(input_size + hidden_size, output_size)\n",
" self.softmax = nn.LogSoftmax()\n",
" \n",
" def forward(self, input, hidden):\n",
" combined = torch.cat((input, hidden), 1)\n",
" hidden = self.i2h(combined)\n",
" output = self.i2o(combined)\n",
" output = self.softmax(output)\n",
" return output, hidden\n",
"\n",
" def init_hidden(self):\n",
" return Variable(torch.zeros(1, self.hidden_size))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manually testing the network\n",
"\n",
"With our custom `RNN` class defined, we can create a new instance:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true,
"scrolled": true
},
"outputs": [],
"source": [
"n_hidden = 128\n",
"rnn = RNN(n_letters, n_hidden, n_categories)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To run a step of this network we need to pass an input (in our case, the Tensor for the current letter) and a previous hidden state (which we initialize as zeros at first). We'll get back the output (probability of each language) and a next hidden state (which we keep for the next step).\n",
"\n",
"Remember that PyTorch modules operate on Variables rather than straight up Tensors."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"output.size = torch.Size([1, 18])\n"
]
}
],
"source": [
"input = Variable(letter_to_tensor('A'))\n",
"hidden = rnn.init_hidden()\n",
"\n",
"output, next_hidden = rnn(input, hidden)\n",
"print('output.size =', output.size())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the sake of efficiency we don't want to be creating a new Tensor for every step, so we will use `line_to_tensor` instead of `letter_to_tensor` and use slices. This could be further optimized by pre-computing batches of Tensors."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Variable containing:\n",
"\n",
"Columns 0 to 9 \n",
"-2.8658 -2.8801 -2.7945 -2.9082 -2.8309 -2.9718 -2.9366 -2.9416 -2.7900 -2.8467\n",
"\n",
"Columns 10 to 17 \n",
"-2.9495 -2.9496 -2.8707 -2.8984 -2.8147 -2.9442 -2.9257 -2.9363\n",
"[torch.FloatTensor of size 1x18]\n",
"\n"
]
}
],
"source": [
"input = Variable(line_to_tensor('Albert'))\n",
"hidden = Variable(torch.zeros(1, n_hidden))\n",
"\n",
"output, next_hidden = rnn(input[0], hidden)\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As you can see the output is a `<1 x n_categories>` Tensor, where every item is the likelihood of that category (higher is more likely)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preparing for Training\n",
"\n",
"Before going into training we should make a few helper functions. The first is to interpret the output of the network, which we know to be a likelihood of each category. We can use `Tensor.topk` to get the index of the greatest value:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('Irish', 8)\n"
]
}
],
"source": [
"def category_from_output(output):\n",
" top_n, top_i = output.data.topk(1) # Tensor out of Variable with .data\n",
" category_i = top_i[0][0]\n",
" return all_categories[category_i], category_i\n",
"\n",
"print(category_from_output(output))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will also want a quick way to get a training example (a name and its language):"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"category = Italian / line = Campana\n",
"category = Korean / line = Koo\n",
"category = Irish / line = Mochan\n",
"category = Japanese / line = Kitabatake\n",
"category = Vietnamese / line = an\n",
"category = Korean / line = Kwak\n",
"category = Portuguese / line = Campos\n",
"category = Vietnamese / line = Chung\n",
"category = Japanese / line = Ise\n",
"category = Dutch / line = Romijn\n"
]
}
],
"source": [
"import random\n",
"\n",
"def random_training_pair(): \n",
" category = random.choice(all_categories)\n",
" line = random.choice(category_lines[category])\n",
" category_tensor = Variable(torch.LongTensor([all_categories.index(category)]))\n",
" line_tensor = Variable(line_to_tensor(line))\n",
" return category, line, category_tensor, line_tensor\n",
"\n",
"for i in range(10):\n",
" category, line, category_tensor, line_tensor = random_training_pair()\n",
" print('category =', category, '/ line =', line)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training the Network\n",
"\n",
"Now all it takes to train this network is show it a bunch of examples, have it make guesses, and tell it if it's wrong.\n",
"\n",
"For the [loss function `nn.NLLLoss`](http://pytorch.org/docs/nn.html#nllloss) is appropriate, since the last layer of the RNN is `nn.LogSoftmax`."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"criterion = nn.NLLLoss()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will also create an \"optimizer\" which updates the parameters of our model according to its gradients. We will use the vanilla SGD algorithm with a low learning rate."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn\n",
"optimizer = torch.optim.SGD(rnn.parameters(), lr=learning_rate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each loop of training will:\n",
"\n",
"* Create input and target tensors\n",
"* Create a zeroed initial hidden state\n",
"* Read each letter in and\n",
" * Keep hidden state for next letter\n",
"* Compare final output to target\n",
"* Back-propagate\n",
"* Return the output and loss"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def train(category_tensor, line_tensor):\n",
" rnn.zero_grad()\n",
" hidden = rnn.init_hidden()\n",
" \n",
" for i in range(line_tensor.size()[0]):\n",
" output, hidden = rnn(line_tensor[i], hidden)\n",
"\n",
" loss = criterion(output, category_tensor)\n",
" loss.backward()\n",
"\n",
" optimizer.step()\n",
"\n",
" return output, loss.data[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we just have to run that with a bunch of examples. Since the `train` function returns both the output and loss we can print its guesses and also keep track of loss for plotting. Since there are 1000s of examples we print only every `print_every` time steps, and take an average of the loss."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5000 5% (0m 7s) 2.7940 Neil / Chinese ✗ (Irish)\n",
"10000 10% (0m 14s) 2.7166 O'Kelly / English ✗ (Irish)\n",
"15000 15% (0m 23s) 1.1694 Vescovi / Italian ✓\n",
"20000 20% (0m 31s) 2.1433 Mikhailjants / Greek ✗ (Russian)\n",
"25000 25% (0m 40s) 2.0299 Planick / Russian ✗ (Czech)\n",
"30000 30% (0m 48s) 1.9862 Cabral / French ✗ (Portuguese)\n",
"35000 35% (0m 55s) 1.5634 Espina / Spanish ✓\n",
"40000 40% (1m 5s) 3.8602 MaxaB / Arabic ✗ (Czech)\n",
"45000 45% (1m 13s) 3.5599 Sandoval / Dutch ✗ (Spanish)\n",
"50000 50% (1m 20s) 1.3855 Brown / Scottish ✓\n",
"55000 55% (1m 27s) 1.6269 Reid / French ✗ (Scottish)\n",
"60000 60% (1m 35s) 0.4495 Kijek / Polish ✓\n",
"65000 65% (1m 43s) 1.0269 Young / Scottish ✓\n",
"70000 70% (1m 50s) 1.9761 Fischer / English ✗ (German)\n",
"75000 75% (1m 57s) 0.7915 Rudaski / Polish ✓\n",
"80000 80% (2m 5s) 1.7026 Farina / Portuguese ✗ (Italian)\n",
"85000 85% (2m 12s) 0.1878 Bakkarevich / Russian ✓\n",
"90000 90% (2m 19s) 0.1211 Pasternack / Polish ✓\n",
"95000 95% (2m 25s) 0.6084 Otani / Japanese ✓\n",
"100000 100% (2m 33s) 0.2713 Alesini / Italian ✓\n"
]
}
],
"source": [
"import time\n",
"import math\n",
"\n",
"n_epochs = 100000\n",
"print_every = 5000\n",
"plot_every = 1000\n",
"\n",
"# Keep track of losses for plotting\n",
"current_loss = 0\n",
"all_losses = []\n",
"\n",
"def time_since(since):\n",
" now = time.time()\n",
" s = now - since\n",
" m = math.floor(s / 60)\n",
" s -= m * 60\n",
" return '%dm %ds' % (m, s)\n",
"\n",
"start = time.time()\n",
"\n",
"for epoch in range(1, n_epochs + 1):\n",
" # Get a random training input and target\n",
" category, line, category_tensor, line_tensor = random_training_pair()\n",
" output, loss = train(category_tensor, line_tensor)\n",
" current_loss += loss\n",
" \n",
" # Print epoch number, loss, name and guess\n",
" if epoch % print_every == 0:\n",
" guess, guess_i = category_from_output(output)\n",
" correct = '✓' if guess == category else '✗ (%s)' % category\n",
" print('%d %d%% (%s) %.4f %s / %s %s' % (epoch, epoch / n_epochs * 100, time_since(start), loss, line, guess, correct))\n",
"\n",
" # Add current loss avg to list of losses\n",
" if epoch % plot_every == 0:\n",
" all_losses.append(current_loss / plot_every)\n",
" current_loss = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plotting the Results\n",
"\n",
"Plotting the historical loss from `all_losses` shows the network learning:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1103a9358>]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAFkCAYAAACjCwibAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xd4VVX2//H3ogiIGjtYEFFHsI1+EymOg9gLjqKCJaKj\nYBccRWcsOFjHPrZRELsIGgsOKjqD6NgbYqKoI1hRVBCswCBNsn5/rORHElLuTW5Jbj6v57kP3nP2\nOWfdE+Su7LP32ubuiIiIiNSlRbYDEBERkaZBSYOIiIgkREmDiIiIJERJg4iIiCRESYOIiIgkREmD\niIiIJERJg4iIiCRESYOIiIgkREmDiIiIJERJg4iIiCQkqaTBzE41s2lmNr/s9bqZ7V/HMbubWbGZ\nLTGzj83suIaFLCIiItmQbE/DV8B5QD5QADwPPGFm21TX2Mw2B54C/gPsCNwM3GVm+9QzXhEREckS\na+iCVWb2A/Bnd7+3mn3XAAe4+28rbCsC8ty9b4MuLCIiIhlV7zENZtbCzI4CVgfeqKFZL+C5Ktue\nAXap73VFREQkO1ole4CZbU8kCW2BhcCh7j6jhuYdgblVts0F1jKzNu6+tIZrrAfsB3wBLEk2RhER\nkWasLbA58Iy7/5DKEyedNAAziPEJecAA4H4z262WxKE+9gMeSOH5REREmpuBwIOpPGHSSYO7/wp8\nXvb2HTPrAZwJnFZN82+BDlW2dQAW1NTLUOYLgHHjxrHNNtWOsZQ0GDZsGDfeeGO2w2hWdM8zT/c8\n83TPM2v69Okcc8wxUPZdmkr16WmoqgXQpoZ9bwAHVNm2LzWPgSi3BGCbbbYhPz+/YdFJwvLy8nS/\nM0z3PPN0zzNP9zxrUv54P6mkwcyuBP4NzALWJLo++hCJAGZ2FbCxu5fXYhgNDCmbRXEPsBfxSEMz\nJ0RERJqYZHsaNgTGABsB84H3gH3d/fmy/R2BTuWN3f0LMzsQuBH4E/A1cIK7V51RISIiIo1cUkmD\nu59Yx/5B1Wx7mSgEJSIiIk2Y1p6Q/6+wsDDbITQ7uueZp3ueebrnuaPBFSHTwczygeLi4mINnhER\nEUlCSUkJBQUFAAXuXpLKc6unQURERBKipEFEREQSoqRBREREEqKkQURERBKipEFEREQSoqRBRERE\nEqKkQURERBKipEFEREQSoqRBREREEqKkQURERBKipEFEREQSoqRBREREEqKkQURERBKipEFEREQS\noqRBREREEqKkQURERBLSqJMG92xHICIiIuUaddIwcWK2IxAREZFyjTppuPlm+OGHbEchIiIi0MiT\nhuXLYfjwbEchIiIi0MiThiFD4I474M03sx2JiIiIJJU0mNkFZvaWmS0ws7lmNsHMtk7guIFm9q6Z\nLTKz2WZ2t5mtW9dxAwZAfj6ceir8+msykYqIiEiqJdvT0Bu4BegJ7A20BiabWbuaDjCzXYExwJ3A\ntsAAoAdwR10Xa9kSRo+G996DkSOTjFRERERSKqmkwd37uvtYd5/u7u8DxwObAQW1HNYLmOnuI939\nS3d/HbidSBzq1L179DSMGAFz5iQTrYiIiKRSQ8c0rA048GMtbd4AOpnZAQBm1gE4HHg60YtccQW0\naQPnndeQUEVERKQh6p00mJkBNwGvuvuHNbUr61k4BnjYzJYBc4CfgKGJXmuddeDKK2HsWHj99fpG\nLCIiIg3RkJ6GUcQYhaNqa2Rm2wI3A5cA+cB+QBfiEUXCBg+GggIYOhRWrKhXvCIiItIA5vWo1Wxm\ntwIHAb3dfVYdbe8H2rr7ERW27Qq8Amzk7nOrOSYfKN5tt93Iy8v7/9t/+glefbWQ0aMLOeWUpMMW\nERHJKUVFRRQVFVXaNn/+fF5++WWAAncvSeX1kk4ayhKGfkAfd/88gfbjgWXufnSFbbsArwKbuPu3\n1RyTDxQXFxeTn59fad/xx8NTT8HHH8O6dU7aFBERaV5KSkooKCiANCQNydZpGAUMBI4GFplZh7JX\n2wptrjSzMRUOmwj0N7NTzaxLWS/DzcCU6hKGulx9NSxbFrMpREREJHOSHdNwKrAW8CIwu8LriApt\nNgI6lb9x9zHA2cAQ4H3gYWA60L8+AXfsCJdeGvUbpk2rzxlERESkPlol09jd60wy3H1QNdtGAikr\nzzR0KNx5Z0zBnDQpVWcVERGR2jTqtSdq0ro1/PWv8Mwz8MEH2Y5GRESkeWiSSQPA4YfDJpvATTdl\nOxIREZHmockmDa1bwxlnwLhxMHeVSZsiIiKSak02aQA4+eRY1Oq227IdiYiISO5r0knDOutEpchR\no2Dx4mxHIyIiktuadNIAcOaZ8P338MAD2Y5EREQktzX5pGGrraBfP7jhBqhHRWwRERFJUJNPGgDO\nPhumT1fNBhERkXTKiaTh97+HnXeO3gYRERFJj5xIGsyit+G55+D997MdjYiISG7KiaQBYMAAaN8e\n/vWvbEciIiKSm3ImaWjdGnr1gtdey3YkIiIiuSlnkgaAXXeF11/XLAoREZF0yLmk4Ycf4KOPsh2J\niIhI7smppKFXL2jRQo8oRERE0iGnkoa11oIddlDSICIikg45lTRAPKJQ0iAiIpJ6OZk0fPwxfPdd\ntiMRERHJLTmZNIB6G0RERFIt55KGzTaDTTdV0iAiIpJqOZc0mGlcg4iISDrkXNIAkTQUF8OSJdmO\nREREJHfkbNKwbBm8/Xa2IxEREckdOZk0/Pa3sXiVHlGIiIikTlJJg5ldYGZvmdkCM5trZhPMbOsE\njlvNzK4wsy/MbImZfW5mx9c76jq0aqXFq0RERFIt2Z6G3sAtQE9gb6A1MNnM2tVx3KPAHsAgYGug\nEEjrChFavEpERCS1WiXT2N37Vnxf1lswDygAXq3uGDPbn0g2tnD3n8s2z0o60iTtuitcdlksXtWt\nW7qvJiIikvsaOqZhbcCBH2tpcxDwNnCemX1tZh+Z2XVm1raB166VFq8SERFJrXonDWZmwE3Aq+7+\nYS1NtyB6GrYDDgHOBAYAI+t77URo8SoREZHUSurxRBWjgG2BXeto1wIoBY529/8BmNnZwKNmdrq7\nL63pwGHDhpGXl1dpW2FhIYWFhQkF+Pvfw+TJCTUVERFpcoqKiigqKqq0bf78+Wm7nnk9Rgqa2a3E\nY4fe7l7r+AQzuw/4nbtvXWFbN+C/wNbu/lk1x+QDxcXFxeTn5ycdX7kHH4SBA+H772G99ep9GhER\nkSajpKSEgoICgAJ3L0nluZN+PFGWMPQD9qgrYSjzGrCxma1eYVtXovfh62Svn4xeveLPKVPSeRUR\nEZHmIdk6DaOAgcDRwCIz61D2aluhzZVmNqbCYQ8CPwD3mtk2ZrYbcC1wd22PJlKhSxfYYAN48810\nXkVERKR5SLan4VRgLeBFYHaF1xEV2mwEdCp/4+6LgH2ImRZTgbHAE8SAyLQyi94GJQ0iIiINl2yd\nhjqTDHcfVM22j4H9krlWqvTqBddcA6WlMQVTRERE6ifnv0Z79YIFC2DGjGxHIiIi0rTlfNLQvXs8\nptAjChERkYbJ+aRhzTVh++2VNIiIiDRUzicNoMGQIiIiqdBskoYPPoCFC7MdiYiISNPVbJIGd3j7\n7WxHIiIi0nQ1i6ShW7dYwEqPKEREROqvWSQNLVpAz55KGkRERBqiWSQNsHIwZD3W5xIRERGaWdIw\nbx588UW2IxEREWmamk3S0LNn/KlHFCIiIvXTbJKG9daDrbZS0iAiIlJfzSZpABV5EhERaYhmlzS8\n8w4sWZLtSERERJqeZpc0LF8eiYOIiIgkp1klDb/9LbRtC1OmZDsSERGRpqdZJQ2tW8csin//O9uR\niIiIND3NKmkAGDQIJk+GTz7JdiQiIiJNS7NLGo48MqZf3nZbtiMRERFpWppd0tC2LZxwAtxzDyxa\nlO1oREREmo5mlzQAnHoqLFgADz6Y7UhERESajmaZNHTpAn/4A4wcqQWsREREEtUskwaAIUNg2jR4\n/fVsRyIiItI0JJU0mNkFZvaWmS0ws7lmNsHMtk7i+F3NbLmZlSQfamrts0+sRTFyZLYjERERaRqS\n7WnoDdwC9AT2BloDk82sXV0HmlkeMAZ4Ltkg06FFCzj9dBg/Hr79NtvRiIiINH5JJQ3u3tfdx7r7\ndHd/Hzge2AwoSODw0cADQKNZMur446FVK7jzzmxHIiIi0vg1dEzD2oADP9bWyMwGAV2ASxt4vZRa\nZx0YOBBuvx1+/TXb0YiIiDRu9U4azMyAm4BX3f3DWtr9BrgSGOjupfW9Xrqcfjp88w385z/ZjkRE\nRKRxa0hPwyhgW+ComhqYWQvikcTF7v5Z+eYGXDPldtoJ1l1Xi1iJiIjUpVV9DjKzW4G+QG93n1NL\n0zWBnYGdzKx8nkKLOIUtA/Z19xdrOnjYsGHk5eVV2lZYWEhhYWF9wq6WGXTvDm+9lbJTioiIZERR\nURFFRUWVts2fPz9t1zNPsrpRWcLQD+jj7p/X0daAbapsHgLsAfQHvnD3xdUclw8UFxcXk5+fn1R8\n9TFiBNxxR8yisEbVDyIiIpKckpISCgoKAArcPaUlDpKt0zAKGAgcDSwysw5lr7YV2lxpZmMAPHxY\n8QXMA5aUzcBYJWHIhh49YN48mDUr25GIiIg0XsmOaTgVWAt4EZhd4XVEhTYbAZ1SEVymdO8ef06d\nmt04REREGrNk6zS0cPeW1bzur9BmkLvvWcs5LnX39D9zSELHjrDpphrXICIiUptmu/ZEVT16qKdB\nRESkNkoaynTvDsXFsGJFtiMRERFpnJQ0lOnRAxYuhI8+ynYkIiIijZOShjIFZatn6BGFiIhI9ZQ0\nlMnLg65dNRhSRESkJkoaKtBgSBERkZopaaige3eYNg2WLs12JCIiIo2PkoYKevSAZcvgvfeyHYmI\niEjjo6Shgh13hFat9IhCRESkOkoaKmjbNhIHDYYUERFZlZKGKrp3V0+DiIhIdZQ0VNG9O0yfHoWe\nREREZCUlDVX06AHuUVJaREREVlLSUMU220D79npEISIiUpWShipatoyS0hoMKSIiUpmShmp07w4v\nvABvvpntSERERBoPJQ3VOOMM2Hxz+N3vYOhQWLAg2xGJiIhkn5KGanTuHL0MN9wA990X4xwmTMh2\nVCIiItmlpKEGrVrBWWfBhx9Cfj4cdhj87W/ZjkpERCR7lDTUYbPN4Mkn4cwz4dpr4eefsx2RiIhI\ndihpSIAZnH9+LGY1cmS2oxEREckOJQ0J6tgRBg+Gm26CX37JdjQiIiKZp6QhCX/5C/z0E9x1V7Yj\nERERyTwlDUno0gUKC+G66+JRhYiISHOSVNJgZheY2VtmtsDM5prZBDPbuo5jDjWzyWY2z8zmm9nr\nZrZvw8LOnvPPh6+/hgceyHYkIiIimZVsT0Nv4BagJ7A30BqYbGbtajlmN2AycACQD7wATDSzHZMP\nN/u22w769YOrr4YVK7IdjYiISOa0Sqaxu/et+N7MjgfmAQXAqzUcM6zKpgvNrB9wEDAtmes3Fhdc\nAL16RcGnAQOyHY2IiEhmNHRMw9qAAz8meoCZGbBmMsc0Nj17wp57wpVXxjLaIiIizUG9k4ayL/+b\ngFfd/cMkDv0L0B54pL7XbgyGD4d33oFHmvSnEBERSVxSjyeqGAVsC+ya6AFmdjQwAjjY3b+vq/2w\nYcPIy8urtK2wsJDCwsIkQ029vfaK0tJnnBH/vf762Y5IRESam6KiIoqKiiptmz9/ftquZ16P/nUz\nu5UYk9Db3WcleMxRwF3AAHefVEfbfKC4uLiY/Pz8pOPLlG+/hW23hb59Ydy4bEcjIiICJSUlFBQU\nABS4e0kqz53044myhKEfsEcSCUMhcDdwVF0JQ1PSsWNUiHzgAXjqqWxHIyIikl7J1mkYBQwEjgYW\nmVmHslfbCm2uNLMxFd4fDYwBzgGmVjhmrdR8hOw69ljYf3849VRIY4+QiIhI1iXb03AqsBbwIjC7\nwuuICm02AjpVeH8S0BIYWeWYm+oVcSNjBrffDgsWRJlpERGRXJVsnYY6kwx3H1Tl/R7JBtXUbLZZ\nLJt92mlw5JExMFJERCTXaO2JFDn5ZNh9dzjrrGxHIiIikh5KGlKkRQs46ST44AP4vs7JpCIiIk2P\nkoYU6tkz/nzrrezGISIikg5KGlJoiy2iyNOUKdmOREREJPWUNKSQWfQ2vPlmtiMRERFJPSUNKdaz\nZzyeKC3NdiQiIiKppaQhxXr1gp9/hk8+yXYkIiIiqaWkIcW6d48/Na5BRERyjZKGFFt7bejWTeMa\nREQk9yhpSINevdTTICIiuUdJQxr07AnvvQeLF2c7EhERkdRR0pAGPXvCr79CSUpXMRcREckuJQ1p\nsMMO0K6dxjWIiEhuUdKQBq1awc47a1yDiIjkFiUNadKzp5IGERHJLUoa0qRnT5g1C+bMyXYkIiIi\nqaGkIU169Yo/q/Y2PPssdOkCL76Y8ZBEREQaRElDmmy6KWy8ceWk4cMPYcAAmDcPDj003ouIiDQV\nShrSqOK4hnnz4MADoXNn+Ogj6NQJDjhAjy9ERKTpUNKQRr16wdSpsGgRHHJIFHt66qnohfjXv2DF\nikgkFi7MdqQiIiJ1U9KQRj17wv/+B/vtB++8A08+CZttFvvKE4dPP4UjjohiUCIiIo2ZkoY0KiiA\nFi3gtddg7Fjo0aPy/t/+Fh57DJ57DoYOzU6MIiIiiWqV7QBy2RprwMknw3bbxQDI6uyzD4weDSee\nCLvsAscdl9kYRUREEpVUT4OZXWBmb5nZAjOba2YTzGzrBI7b3cyKzWyJmX1sZs3mq/G22+ruRTjh\nBDj+eDjtNPjvfzMSloiISNKSfTzRG7gF6AnsDbQGJptZu5oOMLPNgaeA/wA7AjcDd5nZPvWIN2eN\nHAlbbAGHHx7jIERERBqbpJIGd+/r7mPdfbq7vw8cD2wGFNRy2GnA5+5+rrt/5O4jgfHAsPoGnYtW\nXx0efTSqSJ5+OrhnOyIREZHKGjoQcm3AgR9radMLeK7KtmeAXRp47ZyzzTYxvmHsWLjnnmxHIyIi\nUlm9kwYzM+Am4FV3r622YUdgbpVtc4G1zKxNfa+fq445Bk46KcZBvP9+tqMRERFZqSE9DaOAbYGj\nUhSLlLn5Zthyy0geSkuzHY2IiEio15RLM7sV6Av0dve6CiF/C3Sosq0DsMDdl9Z24LBhw8jLy6u0\nrbCwkMLCwiQjblratYNRo6BPH7jvPhg8ONsRiYhIY1RUVERRUVGlbfPnz0/b9cyTHHFXljD0A/q4\n++cJtL8aOMDdd6yw7UFgbXfvW8Mx+UBxcXEx+fn5ScWXS449FiZNirUq1l0329GIiEhTUFJSQkFB\nAUCBu5ek8tzJ1mkYBQwEjgYWmVmHslfbCm2uNLMxFQ4bDWxhZteYWVczOx0YANyQgvhz2nXXwbJl\n8Ne/ZjsSERGR5Mc0nAqsBbwIzK7wOqJCm42ATuVv3P0L4ECirsO7xFTLE9y96owKqaJjR7j00phR\nUVyc7WhERKS5S2pMg7vXmWS4+6Bqtr1M7bUcpAZDh8b0yyFD4PXXYy0LERGRbNBXUCPXqlVUi5wy\nBe69N9vRiIhIc6akoQno3TvqN5x/PvxYWxktERGRNFLS0EQkOijy8cfhu+8yE5OIiDQvShqaiEQG\nRT7yCBx6KAzTqh4iIpIGShqakKFDYfvtY1Bk1UqRX34JJ58Mm2wCRUXw2WfZiVFERHKXkoYmpKZB\nkb/+CgMHwtprw9SpsP76cM012YtTRERyk5KGJqa6QZFXXAFvvAEPPAAbbQRnnx3lp7/+OquhiohI\njlHS0ARVHBT52mtw2WVw0UWw666x/7TToH17+PvfsxuniIjkFiUNTVDFQZEDBsAuu8CFF67cv9Za\n8Kc/wR13wLx52YtTRERyi5KGJqp8UOTixfFYolWV2p5/+lNUj7zppuzEJyIiuUdJQxPVqhU880wM\niuzcedX9660XjylGjoSff858fCIiknuUNDRhG20EXbvWvP/ss2HpUrj11szFJCIiuUtJQw7baCM4\n4QS4/voY/7BwYbYjEhGRpkxJQ467+GLo0ycKQm2ySfz5wQfZjkpERJoiJQ05bsMNYz2KmTPhzDPh\nn/+EHXaAP/8525GJiEhTo6ShmdhsM7j8cpg1K5KH0aNj5oWIiEiilDQ0M61bx6yKRYtg8uRsRyMi\nIk2JkoZmqGtX2G47eOyxbEciIiJNiZKGZuqww+DJJ6McdSotWxbjJ0REJPcoaWim+veH+fPh+efr\nbvvllzBqFPzhDzEboybusdrmNtvADz+kLlYREWkclDQ0U7/9LWy5ZcymqM7PP8Pw4THTYvPNY/Dk\n3LmxONadd1Z/zK23wvjx0dtQ03lFRKTpUtLQTJlFb8Pjj8OKFavuP+ss+Mc/oKAAHn0Uvv8epk6N\nQZRDhsArr1RuP3UqnHNOHLfnnvDQQ5n5HCIikjlKGpqx/v3hu+9WTQDefBPGjIEbboD77ouVNPPy\nYt/NN8cS3P37x2MLgJ9+gsMPh/x8uOYaOOooeOEFmDMnox9HRETSTElDM7bzzrDpppVnUZSWwhln\nwP/9X5Sgrqp16+h5aN8e+vWD//0PjjsuSlQ/8gistloMsmzVKtqJiEjuSDppMLPeZvakmX1jZqVm\ndnACxww0s3fNbJGZzTazu81s3fqFLKnSokV8wU+YEMkCRM/C22/DLbdAy5bVH7f++jHz4rPPYMcd\nYeJEuP/+KCAFsO66sN9+ekQhIpJr6tPT0B54Fzgd8Loam9muwBjgTmBbYADQA7ijHteWFOvfH775\nBt56KwY/nn9+zIDYddfaj9thBxg3Dj7/HM47Dw48sPL+wkJ44w344ou0hS4iIhnWKtkD3H0SMAnA\nzCyBQ3oBM919ZNn7L83sduDcZK8tqbfrrrE+xWOPwa+/wi+/xLiERPTrF2WpN9101X0HHwzt2sHD\nD0dSISIiTV8mxjS8AXQyswMAzKwDcDjwdAauLXVo2RIOPTQeL9xyC/z1r7EaZqI6dYqZGFWtsUbU\nddAjChGR3JH2pMHdXweOAR42s2XAHOAnYGi6ry2JOewwmDcv6jEMG5a68xYWwrvvwowZqTuniIhk\nT9KPJ5JlZtsCNwOXAJOBjYC/A7cDJ9Z27LBhw8grn+tXprCwkMLCwrTE2lztsQfstRdccAG0aZO6\n8x5wAKy1VvQ2XHJJ6s4rIiKhqKiIoqKiStvmz5+ftuuZe51jGWs+2KwUOMTdn6ylzf1AW3c/osK2\nXYFXgI3cfW41x+QDxcXFxeTn59c7Psm+44+PAZEzZlT/GENERFKrpKSEgoICgAJ3L0nluTMxpmF1\n4Ncq20qJmRf6GslxRx0FH38cjylERKRpq0+dhvZmtqOZ7VS2aYuy953K9l9lZmMqHDIR6G9mp5pZ\nl7JehpuBKe7+bYM/gTRqe+0F660Hp58eNSC+/z7bEYmISH3Vp6dhZ+AdoJjoLbgeKAEuLdvfEehU\n3tjdxwBnA0OA94GHgelA/3pHLU1G69Zwzz3xaGLwYOjQAXbbDW68EZYuzXZ0IiKSjPrUaXiJWpIN\ndx9UzbaRwMhqmkszcPDB8fr2W3jqKXjiCTj33Fi74qabsh2diIgkSmtPSMZ07Agnnhhlp//+91j8\n6tlnsx2ViIgkSkmDZMUZZ8Dee8fsih9/zHY0IiKSCCUNkhUtWsTAyMWL4ZRToAEzf0VEJEOUNEjW\nbLIJ3H47jB8PY8dmOxoREamLkgbJqsMPh2OPhaFDtSKmiEhjp6RBsu6WW2DddeG44/SYQkSkMVPS\nIFmXlwd33w0vvxxLaYuISOOkpEEahb32gkMOifoNixdnOxoREamOkgZpNK67LgpA3XBD4sc8/DCc\nc076YhIRkZWUNEijsdVWcOaZcNVVMHt23e0nTYKBAyPJeOml9McnItLcKWmQRuWvf4XVV4cLL6y9\n3TvvxMyLvn1hxx3h8sszE5+ISHOmpEEalbw8uOyyKPxUXFx9m1mz4MADYZttoKgIRoyA//wHXnst\no6GKiDQ7Shqk0TnxRNh+ezjrrFWnYP78c/QutG0ba1i0bw+HHgrbbafeBhGRdEt6lUuRdGvVKsYp\n7LsvHHNMLHS12mrxevZZmDMHXn89ltmGKEk9YgQcdRRMmQI9e2Y3fhGRXKWkQRqlffaJ6ZfPPBPj\nF5Yti1ebNrG0dteuldsPGADdukVvw1NPZSdmEZFcp6RBGq1rrolXIlq2jEGUxxwDJSWQn5/e2ERE\nmiONaZCcceSR8JvfaGyDiEi6KGmQnNGqFQwfDo8/DtOmZTsaEZHco6RBcsrAgdHbMGAAfPVVtqMR\nEcktShokp7RuHZUily+HPn203LaISCopaZCcs8UWUVa6RQvYbTf49NOV+9zh1Vehf384+eTsxSgi\n0hQpaZCc1LlzJA6rrx6JwwcfxOJWPXtC795RQfLee2HhwprP4R4zMUREJChpkJy1ySaROKy3Huyw\nQxR/WnNNePppePNN+PXX6HWoyeOPQ0EBvP125mIWEWnMkk4azKy3mT1pZt+YWamZHZzAMauZ2RVm\n9oWZLTGzz83s+HpFLJKEDh3ghRfg4oujSNR//hNlqLt2jaTi+edrPvbpp+PPsWMzE6uISGNXn56G\n9sC7wOmA19G23KPAHsAgYGugEPioHtcWSdr668Mll8BOO63cZgZ77llz0uAeAyrbtYtFsZYvz0io\nIiKNWtJJg7tPcveL3P0JwOpqb2b7A72Bvu7+grvPcvcp7v5GPeIVSZk994zehx9/XHXfBx/AN9/E\nipvffRdrXoiINHeZGNNwEPA2cJ6ZfW1mH5nZdWbWNgPXFqnRHntEj8KLL666b9KkGEQ5dGisuDlu\nXMbDExFpdDKRNGxB9DRsBxwCnAkMAEZm4NoiNercGbbcsvpHFP/+dyQVbdvGehaPP17zTIsnnoB5\n89Ibq4hIY5CJpKEFUAoc7e5vu/sk4GzgODNrk4Hri9SounENCxfGrIr994/3Rx8NS5bAP/+56vFP\nPw2HHAInnpj+WEVEsi0Tq1zOAb5x9/9V2DadGA+xKfBZTQcOGzaMvLy8StsKCwspLCxMR5zSDO25\nJ9x5J8ykKh3OAAAcXUlEQVSZAxttFNteeCEGPpYnDZ06we67xyyK445beezPP0eBqC5dYOLEWMZ7\nv/0y/hFEpBkrKiqiqKio0rb58+en7XrmnugEiGoONisFDnH3J2tpcxJwI7Chu/9Stq0fMB5Yw92X\nVnNMPlBcXFxMvtY4ljSaOxc6doQHHogeBYDTToPnnoNPPlnZ7p57ojfhq69iqibE+0cegf/+Nx5h\nfPddLJTVunXmP4eISLmSkhIKCgoACtw9pSXq6lOnob2Z7Whm5RPYtih736ls/1VmNqbCIQ8CPwD3\nmtk2ZrYbcC1wd3UJg0gmdegA22238hFF+VTL8l6Gcv37Q5s28OCD8X7yZLj7brj++uiJuPlmmDED\nbrsts/GLiGRSfcY07Ay8AxQTdRquB0qAS8v2dwQ6lTd290XAPsDawFRgLPAEMSBSJOsqjmv46KNY\n5OqAAyq3ycuDgw+OWRQLF8JJJ8Fee60cy7DTTrHt4ovh++8zGr6ISMbUp07DS+7ewt1bVnkNLts/\nyN33rHLMx+6+n7uv4e6d3f1c9TJIY7HXXjBzZrwmTYoehd13X7XdMcfAe+/BYYfBDz/AXXdFkahy\nf/tb9FRcfHHGQhcRySitPSHNXp8+sSLmCy9E0tCnT9RoqGr//WMdi+eeg2uugc03r7x/gw3gootg\n9Gh4//2MhJ5yDz0U63KIiFRHSYM0e2uvDfn58NRTUeip6niGcq1bw5//DAMGxGDJ6gwdClttBWed\nFb0ODfXOOzBlCpSWNvxcdfn5Zxg8GE44ITPXE5GmR0mDCDGuYcIEWLp01fEMFZ1/Pjz6aPRMVGe1\n1eDGG2OMxIQJNZ9n8eIYXHnWWfDaa5W/pEtLYwrnbrtFMtOrV/RqnHNOJBCpSEaq8+CDUY/iww/j\n+iIiVTVoymW6aMqlZNozz0QPQ+fOMbbB6lxVpXZ/+EOsXzF9eix6VdX550dysd56USNik02iB2PL\nLWHUqJiJ8bvfRc/GuutGojJ+fEwR7dQpkoktt1z52mmnmAnSEPn5sNlmsRbHsmXwxhsNvw8iknmN\nasqlSC76/e/j8cP++6fmi/LGG2H2bLjuulX3vfsu/P3vMGIEfP01vPJKDK585BE480zYZpvofXjt\nNTj00BhjceutsYDWCy9E2yVL4Mkno/3++8cjkY8/rn+8JSXxKOTEE+GCC6JHo7o1OUSkeVNPg0iZ\nCRPit+3OnVNzvvPPX1m/ofycv/4Ku+wSX/rFxfE4o1xpKcyfD+usk/g1fv01poj27RtjM157rX7F\npU4/PdbQ+PJLaNky7sMGG0Q9ChFpWtTTIJIBhx6auoQB4MILIwH4859XbvvHPyJZuPPOygkDxDiJ\nZBIGgFatopdh3LjoLbj88uTj/OWXqIg5aFCczywSnmefjVhFRMopaRBJkzXXjMcT48fHwMiZM+OR\nxNChMbgxlXr0iPoQV1wBr7+e3LGPPgoLFsTMiXIDBkQyctVVqY1TRJo2PZ4QSSP3GC8xf34Mdpw+\nPdaqWHPN1F/r119jxsW338YaGIleo3fvWAL82Wcrb7/zTjjllJhN0a1b6uMVkfTQ4wmRJsoMbrkl\nvngnT46ZEelIGCAeLYwdGwtnnZlgkfYZM2IZ8OqW9v7jH2Plz2uuSW2cItJ0KWkQSbP8fLjkEhg2\nLKZiptOWW8a4iXvvhX/+s+72d98dUzoPOWTVfW3awNlnx3iJa6+NFT5FpHlT0iCSARddBDfckJlr\nHX88HHgg/OUv8ciiJsuWwZgx0aPQpk31bU49FY48MsZLdO4ca3LccQf89FPtMXz1VVSWnDWrvp9C\nRBojJQ0iOcYsFs/6/POVS3lXZ8KEeJRxwgk1t2nfPnoa5s6N3os2baKE9nbb1dzzsHw5HHUU3HMP\n7LMPzJvXsM8jIo2HkgaRHLTTTrGU99/+BitWrLp/8eIo4rTvvrD99nWfb6214LjjonLmzJlRC6Jf\nP1i0aNW2I0bAW29FsrFgAey3X6xr0VQtXgxHHBGDWEWaOyUNIjlqxAj45BN4+OFV9111VVSYvOWW\n5M+72WZRjfLjj+NRSMV1M/797xg4eeWVMHBgzMj48st4XFJdgtEUPPxwTEv9+9+zHYlI9ilpEMlR\nO+8clSL/9rfKX+wffxxf7OeeC1tvXb9z77hjzNQYP35lQamvv47xEX37xuJaEL0YkybBe+9F+eul\nSxv2mbJh1KjoWXnooeg5EWnOlDSI5LARI6Jb/bHH4r07DBkSNSOGD2/YuQ89NBKSSy6JL9TCwhjz\nMGZM5VVAe/SInomXXoKTT27YNTNt6tR4/eMfkfDUNkZEpDlQ0iCSw3r1inELl18evQ2PPALPPRcL\nYFW3+mayhg+PQY+FhbEq5kMPwfrrr9pujz3gppuid+Kzzxp+3VRZujTirsnIkTFr5KSTYrrs7ben\nb2lykaZASYNIjrvoInj//fjCHjYsegj69k3Nuc1ilsRBB8XiXL//fc1tjzsu1tYYNSo1106FCy+M\nJcgnTlx13w8/RBJ06qmxiNdJJ8UKpVqPQ5ozJQ0iOW7XXeM3/cGD45n8zTen9vzt2sXjhyFD6m53\n4omRZDSGQZFz5kRPQl5exPXdd5X333NP9CqUT0ndf3/YdNOoUyHSXClpEGkGLrooHk9cfDF06pS9\nOE4/PRKXcePSf63S0soDQKu66qpYc+PNN2Na6imnrHz0sGIF3HZbTLXcYIPY1rJlJBcPPggLF6Y/\nfpHGSEmDSDOw++6xzkTFZbqzoXPnqB9x663pHxtw9NHxuGTx4lX3ffVVjE/4859jMa7bb49iV+XJ\nzKRJUY+iau/J4MFxvoceSm/sIo2VkgaRZqJr1xiDkG1Dh8IHH8RsinR5+eWorzBlSoxJqJqgXHFF\nLBz2pz/F+/794dhjI7ZZs2LcRX4+9OxZ+bhOnWI8SNVHFC+9FNNLTzklfZ9JpDFQ0iAiGbXnnrDN\nNvUrLFVuzpzqK11CJAjnnQcFBTH48/77Y8pkuZkzY6Gu886rvOLoP/4RlS8POyyKVA0ZUn2SdfLJ\n8PbbUFISgyUHD46enCVLIpn4z3+S+yyLFkXpbZGmIOmkwcx6m9mTZvaNmZWa2cFJHLurmS03s5Su\n7y0iTYdZ/Eb/+OP1W9Dq449hiy3gmGOqf8Txz3/GOIVrr41HFH/+cxSbeuGF2H/55bDeeqs+elh7\nbbjvvpgdsfbaMZW0OgccABtvHL0U3brFY4077oCPPoLevWNtjiVLEvssy5dHctOtWwwm1XROaezq\n09PQHngXOB1I+K+4meUBY4Dn6nFNEckhf/wjrLEGjB6d3HHu8bihffsYV3DttZX3L18ea2rsv3/0\naEAMeNxjjxjU+Nxz0fNwwQWw+uqrnn+vvaIH5MYbq98P0KpVTL987TXYe+8onnXSSTFQcvRo+OIL\nuPrqxD7PuHGRbGyySazlceCBUfq73Lx5kZDst18kK+qRkKxz93q/gFLg4ATbFgGXAhcDJXW0zQe8\nuLjYRSQ3nXmm+/rruy9enPgx997rDu6TJ7sPH+5u5v700yv333ZbbHv33crHff+9e5cu7i1auG+y\nSXLXrM7Spe7vvVf9vuHD3VdbzX3GjNrPsWyZ+xZbuB92mHtpqfuECe6dO8exp5zi3qdPxNuihftu\nu8WfV1zRsLileSguLnbil/p8b8B3fHWvjCQNwCDgTaJnQ0mDiPhHH8W/QEce6f7KK/HFWZt589zX\nXdd94MB4v2KF+x/+4J6XF1/QCxe6d+jgfuyx1R8/bZr72mu733NPaj9HVb/8EsnAnnvW/pnuuSc+\nf8UE55df3C++2H2DDdz339/9zjvjc7u7n3deJBQffpjW8CUHpDNpMG/AQzQzKwUOcfcna2nzG+Bl\n4Pfu/pmZXQz0c/f8Wo7JB4qLi4vJz6+xmYg0cbfcEqtHzpoFXbrEOIVjj4Xf/GbVtn/8Izz9dDwO\n2HDD2DZ/fpTKdo8yz7fcEmMeOneu/nrLl8fiU+k2eXI8Urj//vg81cXRrVssYV6+LkhdFi+O9uuu\nC6++Go9DRKpTUlJCQUEBQIG7p3QMYVqTBjNrQfQw3OXud5Rtu4Tonagzadhtt93Iy8urtK+wsJDC\nwsJ6xywijUtpKbzySsx0ePTRKP502GGx2NZOO0Wb556DffaJWQ+DB1c+/uOPY1Gs+fNjwGNjWcK6\nsDDinjYtBk5WdM89UWly2jT47W8TP+err8Juu8ENN8BZZ9XdfsWKeK22WnKxS9NRVFREUVFRpW3z\n58/n5ZdfhjQkDWl9PAHklbVZBiwve62osG33Go7T4wmRZuiXX9zvvtt9yy2j6/7gg+PRxVZbxXP9\nmrr7n3kmxgB8/31Gw63VnDkxfqJjR/dXX125fdmyGF/Rv3/9zjt0qHu7du6fflp329NPdy8oqN91\npOlK5+OJdNdpWABsD+wE7Fj2Gg3MKPvvKWm+vog0Ie3aRU/CjBnRtT9jRkxjnDUrqjbWVJxq333h\nxRdjKmVj0bFj1HP4zW+ijkN5FcyxY6NWxEUX1e+8V10Vj2dOOqn2KZqffBL3rLgY/vvf+l1LpKpW\nyR5gZu2BrYDy/323MLMdgR/d/SszuwrY2N2Pc3cHPqxy/DxgibtPb2DsIpKjWrWKsQBHHw3jx8ca\nEd26ZTuq5HXsGMWezj0XzjgD3norHjH075/cY4mK1lgD7rwzEqXbb48pqNW5+OK4/sKF8dhnu+3q\n/zkSVVoaj0MyMW5EsqM+PQ07A+8AxUT3x/VACTGdEqAjkMUlcUQkV7RsCUceGTUMmqrWraPuw4MP\nRgI0c2Z8oTfEPvtEZcpzzqlc16Hce+9FHYuLLop79+ijDbteIoqLYdttY8yF6knkrqSTBnd/yd1b\nuHvLKq/BZfsHufuetRx/qdcyCFJEJBcVFsLUqfDII7DDDg0/3/XXxwDLY45Z9Ut6xIiomjloUBS1\n+vDD9D2iWLEiiln16hUDLqdOhb/9LT3Xam5mzoRffsl2FJVp7QkRkQzZbjs4/PDUnGuNNaKiZHFx\n5S/pKVOiJPUll0Qvxz77QF5eJCupNmtWVN4cPjzKdb/9dvRuXHFFlPKuryVLohz3rbfG+h6JKi2N\nKaw//lj/azcW330Xf1+6doWiosZTYlxJg4hIE9Wz58ov6TfeiG0XXhhfNuUz09u0WfmIIpVfPOPH\nx7iMmTNjXY+rroqehuHDYz2NY4+Nxbjq46qrYtzGsGGw0UYxBmTixLofezzyCAwYEJ//iSfqd+1k\npevL/N57IwkqKIixPb17R4KYbUoaRESasOHDoXv3+JKeODEGXl5+eeXiT0ccEUWxUvGIYsmSWHDs\n8MOjF2PaNOjTZ+X+Vq1ihsjs2dH7kKwZMyJpGD4cvvkm1hf57DM4+OAYM/Hzz9Uft2xZJEx77QU7\n7wyHHAIDBybXU5GMFSvg0kthnXViKfZUn3v06BjP8/jjUe9j/vz4OZ92WiQTWZPqOZypeKE6DSIi\nCfv0U/f27d1btXLfeedV61ksXRrlti+6qGHX+eQT9//7vyhnPWpU7WWyb7stam1UXBukLqWlUY9j\nq61WXR9k6lT3Ndd0P/HE6o+99dZYd+T99+M8Y8e6r7OO+4Ybuk+cmHgMifj665Vrg3Tp4r7ppu4/\n/JC68z/9dNy7N99cuW35cvfrrovtL7xQ+/GNdu2JdL2UNIiIJOeee+JLc/Lk6vcfd5x7t26rftE/\n9lh88V12mfv8+dUfu3x5fAmvuWYU3krkn+bSUvcDDoj1QGbPTvwzgPtzz1W/f/To6vcvWBDJwfHH\nV94+e3bE0KaN+48/JhZDXSZOdF9vPfeNN3Z/8UX3WbMiOTn00LrXT0nUgQe65+ever7S0vhZ1ZQ4\nlVPSICIidZo7t+Z9Tz0V/+K///7KbU88Eb0TBQXxxbreeu7XXuu+aFHsnzEjFsraaKM49ogjak4s\nqjN7dlTE3HDDuFZtyhckq2nBMfdYpKxPn/ji/N//Vm6/5JKI/8svVz1mzhz3li3dR45MPO6aXHhh\n3IcDD3T/7ruV2//5z9g+enTDrzFzZiR/d91Vcwx5ebWv1KqkQUREGqT8EcWIEfH+6afdW7eOctbL\nl8dvzKecEklEhw7uu+wS3xDrrOM+ZIj722/X77rffut+0EFxrsGDa046/vjHSBrKV/WsySefuLdt\n6z5s2Mrzr7GG+znn1HzMQQfFY5uG+Ne/4jNcfnn1PQqnnRZxffBBw65z/vnxc6qYFFX04YcRx2OP\n1XwOJQ0iItJgxx3n3rVrrNXRpo17v36xFkZFn33mfsIJ8dv0Qw/V/httokpLY02RNdZw33xz98cf\nd3/jjViT46WX4rdqiDaJuO66+G38jTdiLY68vNrXHSnvCajYy5KMBQvcO3Vy32efmh9B/PKL+3bb\nuW+/ffx3fSxZ4r7++u5nnll7u/x898MOq3m/kgYREWmw8gF2rVu79+0bX1KZ9Pnn7r17RwxVX3vt\nlfiYgOXLo+dgyy3js1x1Ve3tly6NL+Ozz65f3EOGxEDTmTNrb/f++9Hb0K+f+/PPr5qQ1WXcuLgX\nM2bU3u7662Mw6k8/Vb+/KS9YJSIijcTee8d6FLvvHkWQ2rTJ7PW7dImaDh98AO+/H5UqP/oIPv0U\nJk2qeUGyqlq1imXSv/wSNtgA/vSn2tuvtlpMvxw3LvkS16+8AiNHwpVXwuab1952++1j2fOpU6Po\n1frrx7TJceMSm/p5221xXNeutbc76qj4HI89lvDHSBlzbyRlpiows3yguLi4mPx8VZwWEUmVn36K\nCpEtcuBXxieeiKThd7+ru+20abDTTnHMwQcndv4lS2DHHWP11FdeqVz7ojbu8M47UTfjqaeiUmaL\nFhHnQQfFq1u3yklSeXzjx0cxq7rsvXfUa3j++VX3lZSUUFBQAFDg7iWJRZ0YJQ0iItIs5OdD584w\nYUJi7YcPjzU+3nknCkvV1+zZ8K9/RRLx7LOweHFUumzZMhKTJUtijYkOHaL3JJFVQu+9F044Ab76\nCjbZpPK+dCYNSS+NLSIi0hQNGgRnnw3z5sGGG9betqQkqlFecknDEgaIhcVOPDFeixdH78Drr0fS\n0K5dLP3erl2UBU90WfHDDovqkEVF9au8WV/qaRARkWbhhx/iC/zqq2Ndi5p89x306BEloqdMSfyL\nPNMOPzyWRn/33crb09nTkANPtUREROq23noxnuHee2teaGrpUjj00HhcMGFC400YIAZ3TpuWvmXP\nq6OkQUREmo1Bg2LmRkk1v3+7w8knx8DFxx+P8Q+N2QEHRG/IAw9k7ppKGkREpNnYd98YOHjEEbH8\n9tKlK/dddx3cf39M59xll+zFmKg2bWJK55dfZu6aShpERKTZaNUKnnkmZlKcckrUXrj22vht/fzz\nY3ntgQOzHWXibr01sz0Nmj0hIiLNynbbwaOPwscfR+/CiBGwbFnUR7jssmxHl5xEa0ekinoaRESk\nWdp663hEMXMmjB4djyZyoehVOqmnQUREmrWNN45HFVI35VQiIiKSECUN8v8VFRVlO4RmR/c883TP\nM0/3PHcknTSYWW8ze9LMvjGzUjOrdekPMzvUzCab2Twzm29mr5vZvvUPWdJF/2Nnnu555umeZ57u\nee6oT09De+Bd4HRive667AZMBg4A8oEXgIlmtmM9ri0iIiJZkvRASHefBEwCMKt79XN3r1rh+0Iz\n6wccBExL9voiIiKSHRkf01CWaKwJ/Jjpa4uIiEj9ZWPK5V+IRxyP1NKmLcD06dMzEpCE+fPnU1Jd\nQXZJG93zzNM9zzzd88yq8N3ZNtXnbtDS2GZWChzi7k8m2P5o4HbgYHd/oY52GSyMKSIiknMGuvuD\nqTxhxnoazOwo4A5gQG0JQ5lngIHAF8CSNIcmIiKSS9oCmxPfpSmVkaTBzAqBu4AjywZS1srdfwBS\nmh2JiIg0I6+n46RJJw1m1h7YCiifObFF2fTJH939KzO7CtjY3Y8ra380cB/wJ2CqmXUoO26xuy9o\n6AcQERGRzEh6TIOZ9SFqLVQ9cIy7Dzaze4HO7r5nWfsXiFoNVY1x98H1iFlERESyoEEDIUVERKT5\n0NoTIiIikhAlDSIiIpKQRpc0mNkQM5tpZovN7E0z657tmHKFmV1gZm+Z2QIzm2tmE8xs62raXWZm\ns83sFzN71sy2yka8ucbMzi9b5O2GKtt1v1PMzDY2s7Fm9n3ZfZ1mZvlV2ui+p4iZtTCzy83s87L7\n+amZ/bWadrrn9ZTIYpF13V8za2NmI8v+v1hoZuPNbMNk4mhUSYOZHQlcD1wM/B+xNsUzZrZ+VgPL\nHb2BW4CewN5Aa2CymbUrb2Bm5wFDgZOBHsAi4mewWubDzR1lye/JVFlvRfc79cxsbeA1YCmwH7AN\ncA7wU4U2uu+pdT5wCrGQYTfgXOBcMxta3kD3vMFqXSwywft7E3Ag0J+YoLAx8FhSUbh7o3kBbwI3\nV3hvwNfAudmOLRdfwPpAKfD7CttmA8MqvF8LWAwcke14m+oLWAP4CNiTmHl0g+53Wu/31cBLdbTR\nfU/tPZ8I3Fll23jgft3ztNzvUqKycsVttd7fsvdLgUMrtOladq4eiV670fQ0mFlroAD4T/k2j0/1\nHLBLtuLKcWsTGeuPAGbWBehI5Z/BAmAK+hk0xEhgors/X3Gj7nfaHAS8bWaPlD2GKzGzE8t36r6n\nxevAXmb2G4Cy2j27Av8qe697nkYJ3t+didpMFdt8BMwiiZ9BNhasqsn6QEtgbpXtc4lsSFKobLXR\nm4BX3f3Dss0diSSiup9BxwyGlzPKyqfvRPwPW5Xud3psAZxGPOq8guiq/YeZLXX3sei+p8PVxG+y\nM8xsBfHo+0J3f6hsv+55eiVyfzsAy3zVoopJ/QwaU9IgmTUK2Jb4bUDSwMw2JRKzvd19ebbjaUZa\nAG+5+4iy99PMbHvgVGBs9sLKaUcCRwNHAR8SifLNZja7LFGTHNFoHk8A3wMriGyoog7At5kPJ3eZ\n2a1AX2B3d59TYde3xDgS/QxSowDYACgxs+VmthzoA5xpZsuIDF/3O/XmANOrbJsObFb23/p7nnrX\nAle7+6Pu/l93fwC4EbigbL/ueXolcn+/BVYzs7VqaVOnRpM0lP0mVgzsVb6trAt9L9K08EZzVJYw\n9AP2cPdZFfe5+0ziL0/Fn8FaxGwL/QyS9xywA/Fb145lr7eBccCO7v45ut/p8BqrPtLsCnwJ+nue\nJqsTv/RVVErZd4zueXoleH+LgV+rtOlKJNNvJHqtxvZ44gbgPjMrBt4ChhF/Ge/LZlC5wsxGAYXA\nwcCiCouHzXf38iXIbwL+amafEkuTX07MYHkiw+E2ee6+iOiq/f/MbBHwg7uX/yas+516NwKvmdkF\nwCPEP5wnAidVaKP7nloTifv5NfBfIJ/49/uuCm10zxvA6lgskjrur7svMLO7gRvM7CdgIfAP4DV3\nfyvhQLI9daSaqSSnl33gxUT2s3O2Y8qVF5H5r6jm9ccq7S4hpu/8QqzHvlW2Y8+VF/A8FaZc6n6n\n7T73Bd4ru6f/BQZX00b3PXX3uz3xS99Moj7AJ8ClQCvd85Td4z41/Bt+T6L3F2hD1Or5vixpeBTY\nMJk4tGCViIiIJKTRjGkQERGRxk1Jg4iIiCRESYOIiIgkREmDiIiIJERJg4iIiCRESYOIiIgkREmD\niIiIJERJg4iIiCRESYOIiIgkREmDiIiIJERJg4iIiCTk/wHMztUCX24OVgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x106d23ac8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import matplotlib.ticker as ticker\n",
"%matplotlib inline\n",
"\n",
"plt.figure()\n",
"plt.plot(all_losses)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluating the Results\n",
"\n",
"To see how well the network performs on different categories, we will create a confusion matrix, indicating for every actual language (rows) which language the network guesses (columns). To calculate the confusion matrix a bunch of samples are run through the network with `evaluate()`, which is the same as `train()` minus the backprop."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAGoCAYAAACXNJbuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXeYJFXV/z9fdkFYkCxBJWckSBRBQckoGBDh5UUyP0VB\ndMGXpLCSJCfBAJKRjAgoIFElieQkYQm7sMDCguwSll3C7vn9cW4zNTUdqrtrZnp6z+d56pnuW3VP\n3a6u6VP33BNkZgRBEARBMLjMNNgDCIIgCIIgFHIQBEEQdAShkIMgCIKgAwiFHARBEAQdQCjkIAiC\nIOgAQiEHQRAEQQcQCjkIgiAIOoBQyEEQBEHQAYRCDoIgCIIOIBRyEARBEHQAoZCDIAiCoAMIhRwE\nQRA0RNJSko6UdImkBVLbFpI+N9hj6xZCIQdBEAR1kbQB8BjwBWBrYI60a1XgsMEaV7cRCjkIgiBo\nxDHAL8xsE+CDTPttwDqDM6TuIxRyEARB0IiVgT9XaZ8AzD/AY+laQiEHQRAEjZgELFylfTXg5QEe\nS9cSCjkIgqAGknaUdJekVyQtltp+Kumbgz22AeZS4FhJCwEGzCRpPeAE4IJBHVkXEQo5CIKgCpJ+\nCJwEXA/MDQxLuyYBPx2scQ0SBwNPAeNwh64ngNuBu4EjB3FcXYXMbLDHEARB0HFIegI42MyulvQO\nsKqZPS9pJeAfZjbDrZ1KWgRfT54DeMjMnhnkIXUVwwd7AEEQBB3KEsBDVdrfB2Yf4LF0BGY2Dhgn\naRiwsqR5zGziYI+rWwiTdRAEQXXGAJ+v0r458OQAj2VQkXSKpN3T62HAP4EHceX8lcEcWzcRM+Qg\nCILqnAT8RtKsgIC1JW0PHATsMagjG3i2Af6YXm8FLAksD+wIHAWsN0jj6ipiDTkIgqAGknYAfgks\nlZpeAUaZ2dmDNqhBQNJUYGkze0nSmcB7ZvZTSUsAj5jZnIM8xK4gZshBEAQ1MLOLgIskjQDmMLMJ\ngz2mQeI1YEVJ43GT/Q9T+whg2qCNqsuINeQgCIIqSJotKWLM7D1gthSDvOkgD20wOBe4HHgcj0O+\nJbV/AQ+HCkogTNZBEARVkHQTcJWZ/V7S3MDTeB7n+YF9zex3gzrAAUbSNsAiwBVm9lJq2xmYZGbX\nDOrguoRQyEEQBFWQ9AawgZn9R9IewI/xVJHfAQ43sxUGdYCDhKRZzWzqYI+jGwmTdRAEQXVGAO+k\n15vis+XpwD3AYoM2qkFA0jBJh0h6GXhX0pKp/YhKOFTQPqGQgyAIqvMs8K2UnWoz4KbUvgDw9qCN\nanD4ObALsD+9yy8+zowXAtZvhEIOgqAUJC0taTNJs6X3GuwxtcnhePGEscC9Zvav1L4p1TN4dTM7\nAd9PXudZr+pH8HjkoAQi7CkIgraQNB9wGbAh7oG7DPA8cLakiWa232COr1XM7EpJd+JlBx/J7LqV\n6rWBu5nP4BaDPDMBMw/wWLqWmCEHQdAuJwMfAYsC72XaL8NjVocsZvYqvo68SWXmD9xnZjNaqM8T\nwJertG/DjGct6DdihhwEQbtsCmyWsjhl259hCDs/pZn/5cBX6aKZf4scDpwv6TP4RG5rScvhpuwt\nB3VkXUTMkIMgaJfZ6T0zrjAvXhlpqHIy8CFdOPNvlhRnvBWwMTAZV9ArAFuZ2c2DObZuImbIQRC0\nyx34TOmQ9N4kzYR75P590EbVPl05828VM7sD2GSwx9HNhEIOgqBd9gdulbQmMAtwHPA5fIY8lKsA\ndevMvy0kzUHOumpmM1oYWL8QJusgCNrCzB4HlgXuBK7BFdlVwGpm9txgjq1NKjP/Ct0y828aSUtI\nuk7SZOAtYGLaJqW/QQlE6swgCIIqSFoJD3F6EA/pupbMzH+IP2w0haS78JrQp+KVn3opDjP752CM\nq9sIhTwDkBLjb4PXdD3ezN6UtDrwmpm9PLijG5pIGoZnLtoIz9yUN+FtOAjDGhQkbQ68a2Z3pvd7\nAf8PD5XZy8yG7AxK0lzA3sCqwBy4cv6NmY0f4HEsg3t7V7vXDh+A878LrGFmT/f3uWZkQiF3OZJW\nwUulvQUsDixnZs9LOhJY1Mx2qtc/qI6k03GFfB0wnr4zhpGDMKxBQdJjwAFmdr2klYH7gRNxBfKU\nme06qAMc4kj6f8DvgDeAV+l9r5mZrV5QzkbUfoDcrUHfvwNHmdkt9Y4L2iMUcpcj6RbgQTPbX9I7\nwKpJIa8LXGxmiw/uCIcmqRLQTmZ2/WCPZbBJs6eVzGyspF+m19skK8z1ZrbQ4I6wNSStX2+/md0+\nQON4AfitmR3bhoxRwKH4w1K1B8hvN+i/FPB74I94/uoPc/0fbXVsQQ/hZd39rAX8oEr7y8CQ/KHs\nED6geirBGZEP8MpI4HGqF6TXbwJzDsqIyuEfVdqyimxYIwElLW3MA1xR4Lh67AnsYmYXttj/U/iS\n17mZNsPXlY0C1yJoTCjk7ud9qv8oLgu8PsBj6SZOBH4iaW8LM9OdwEnJ8WdtYLvUvizw0qCNqn3m\nyb2fGa+HfARe/agIp9KztPE4uZlpQa7AY6J/30LfCrMAd7fR/xw8Reb2VHHqCsohTNZdjqSzgPmA\nbfEZyyp4tZargdvN7KeDOLwhi6Q/42ukbwL/oa8Jb+vBGNdgIGlR4LfAIsCvzezs1H4yMMzM9hnM\n8ZWNpA2Ak8xsjQLHtrS0ISl7zWYH9sWV+mP0vdd+XUDesbjj3RHNjCPTfzK+3BVWoX4kFHKXk7xE\nrwTWBD4JvIKbqv8FfM3MJg/i8IYsks6ttz8cmboXScsD95vZHAWOfQX4ipmNbvIcYwoeama2ZA0Z\nJ2XezgTsDDyatrxS37fBeP4CnGdmfyo4rqAFQiHPIEhaj0zoxlD1lpQ0O3Agtdfkqv44Bf1LcvrZ\nFV9n/ImZTZC0BfCimf1ncEfXGilCoVcTXorxQGC4mX2pgIz9gCWBAV/aSJ7RRbBGa9mSvg/8Ajdd\nV5ulX9vSIINehEKeAZE0t5lNGuxxtIKkS4ANgAup7i166mCMa0YmmXBvAO4C1gdWSJ78BwJrmtk2\nTchaEDiBngeuXkmkzWzAnIckTafHcSnLPcBuRUow9sfSRnIUWxl4YaBivNO1qIUN5PfSzYRTV5cj\n6QBgrJldlt5fDnxH0qu4yfqRugI6jy2Ar5vZXe0IkVcLWILqs+xCzi+StsHX5hfFnWayMgrFhnYJ\nxwC/MLOTUmhdhdvwpBrNcB5+PY+gygPXALNE7v104HUzm9qEjEnAn9sZhKRTgMfM7OykjG8Hvgi8\nJ2lLM/tHCzLnxLOPPVXkwcLMIs3yABAKufvZE9gBQNImeLWWLXBFcjzuvTmUmIjPNlpG0trARbgp\nMT/7KRTCkZxujsIVyDfxcJCl8DCz37QzviHIysD/VmmfAMzfpKwvAV82s4fbHlWbmNkLJcgow5dg\nGzz+F7wE4uLA8sCO+D3YsIBHehC/3cxOlzQbHo+8uO/S/8TacGcQCrlDkbQWMJOZ/TvX/gVgmpnd\nX1DUQsC49HpL4HIzu0nSWODfNXt1LocAh0va2cyqVeIpwhm4Y8vWtD4L+xHwfTO7RNIuwHHJTHs4\nnut4RmISvraad0RaDY93b4Zx9H1IGhRyns5ZDJiKx6HfbmbT+nko8+MZugC+BlxhZqMlnQP8pKCM\n9XHlDfBt/BrPjTt6/QJoqJCT/8YGVLcINfT0DhoTCrlz+Q1wdJX2zwAHAF8oKGciHo4yDi+q/ovU\nLoZIML+kh+itNJcGXksPFfk1uSKm4mWB77YZwrEoPXGdU3APdvC17Xto3lQ7lLkUOFbSd/Hvaabk\nRHgCPUlCivJT4BhJPzCzseUOs2lG4gkxRtBT0WgevCTju/hyx/OSvmpm46qLKGVp4zVgRUnj8f/h\nH6b2EXgIYxHmoseytDnwJzN7T9J1uKWsLpJWA65P55w9yZofvxYTgFDIJRAKuXNZEahmtnso7SvK\nVcDFkp7B45FvSO2rMXQyTV1dsrz7cHN1O5//VXwm/ALwIrAO8Ai+7lhohidpzlp1ZCUtPRgxn5Jm\nofq6+ot1uh2MP0COwx/ynkh/LwaObHIIl+E/+s9Jeo++D1wDaX04AFd+e1QqO0laGrew/AFPiHIp\ncDJuVu5DSUsb5wKX02PNqURIfAFouP6bGAd8UdKbuEL+n9Q+Dz7bb8TJwF/wJbC38Pv9Q9yUHo6U\nJRFe1h2KpP8CW5rZv3Lt6wLXmVk+i1AtOTPjZq1F8DjCh1L7SOAdMzurgIwhH2okKfsQswyuKI6l\negjHEwXknQWMM7PDUnWj43Ev4zWBq8xs9wIy7gA2NrP3c+3LAbea2WcbySiLVE3oHGDd/C4KetGm\nBCEr4aF1D5nZMy2MY+d6+83s/GZltoqkZ4Ft8uvZabb4JzNbMv0//snMFq4h4yngsLS0kc0lfzgw\nr5kVsqSkWfYiuLn6pdS2MzDJzK4p0P9HuOJ8F3+IXN3Mpkv6MbC1mX21Qf9JwBfM7On0+otm9mRa\nQjvfzJYv8jmC+oRC7lBSeM/CwDfN7K3UNjc+W5xgZtsO8FhKCTWSF3hfmuqKvWGyfkmL+KEf/yit\njTsUPWFmZ9bplw1hqRbK8vG+gspnJnyN/6P0/n9wZfYMcIaZfVBAxg3pvN/IyFkB906+3MyKrg+2\nTUp7+RHuMV3tOx5q3vhtk2bo6+f9NZJ/xz/NbISkxYHHayUJSTJWMLMXJE0ANjGzR9ID0D1mNl//\nfopeY1kTV+o3m9m7qe3ruFKvG7Ug6XVgXTN7RtJo4MdmdmNKkvKAmc3e3+OfEQiTdefyMzy84YW0\nhgrweXw9acdmBEnaES8wsST+ZPuCpJ8CY4o8XVNeqNE6uBlzMVr0bk79zwQulLQQbr57HNhB0kJW\nuzbsMq2NujpmNh0Pg6m8vxQ3XzbD1vj4L0oK/XPArcBFjTIn9QOfx+vdFjWBfoz6qTa0pFnpu+Za\n1cRfo//ceG7tamMqsrb9d+AMSXtkLEur4aUQb0vHrExfZ7YsLS1tJFP3mWY2tY5zWeWzFFq/TQ8W\n9+farivSF18qWwt/4Pwn7lg5P/5b9HhBGUEDYobcwSRT8Q54hq0puGfwJWb2Yd2OvWX8EDgcOAVP\niL9SMpntAuzcyFSVZIzBY5afbP5T9JLzMDAaGEX1WdhbBWRMBNZJprN9gO3MbD1JmwK/H0jzeVIY\nq1D9B79Q5qKkNP6B/9CtD1xgZv9X7kgLjeM+YKSZ3dlC39JqQ6d7/ljcCarP7LFoAgpJW+GhbXMA\nb+fGZEXWotMD34X4g0blf244/tC0o5m9JumrwMxmdlMNGS0tbaT/uTXN7L+qn0bTat3z8tSZh5jZ\nZPVOo1lNSKPUmWsCnzSzv0taAHfWq1iEdpsRLSj9QSjkLkfSE8DBZnZ1bg1rJeAfZtYwTlTS93CH\nlHZCjUpJUK/etXevBe4ys2PT+uXTZjZbARn742b/83LtuwDzm9kJBWRsjv8oVbt+Nc3e8oQMeRYG\nbgb+iq/VV4QUng22i6QN8XX1g6m+rl5zLCqxNrSk3+CZrQ7BleFeeGTBD4ADzeyignJG417BB7dz\nzyZZy+Oe+eD32NNN9G17aaNV5Kkzv21mk1Q/jaa1asUIyiUUcgch6RvADWb2YXpdkyZmYFOA5ZOZ\nOquQlwEeraXAVD3USMBYWgs1QtJteLzu34ocX0PGv3FT4nXATfhs+ZFkDr+yiCNUmnFsb2b35NrX\nAS4uMsuWe63fBBxuZq81Mf7KWnafXelvU2vZZaGe1Ij5sTUci1osoFBD1ou4cv+HpLdx56Nn07LL\n9mb2tYJyJgMrm9nz7Y5psJF0KHBC/sFCnuDj/+os0wRDjFhD7iyuxhN5TKB+qE8zBcHH4OuD+axD\nmwP1TNClhBqpd4L+04ATkymw2izs0QIiD8BTEf4f7t1ZMZV9A7i34LAWxtfi87wGfLqgjAXxEnyF\nlXGi4RLBINHOuMqsDT0vUFGib9OTZOVOfO22KDfiZuGWFbI88UZNzGy3Gv1WwR29pqtvgYq8jCL3\n/Ci8FnJ+pj8i7et3hawOyjHezYRC7iAsky/WyssdexLwm7TeKWBtSdsDBwF71BnLYSWd/2H6ejVn\nf+iyns8N/6nTzGl+YE7rnVj/TPr+YNXiJTwXcH5tbl18DbQIVwJfAZ4reDwAZvbPZo4fKNoc15dw\nhb6FpHYLKDyPOzy9iMfYbos/aG2FZwSrSc6qdB1wvDzcrdXqRPnQwpnxsK656XHqqsbD9DxYV7v/\nPx4GxR6sK/8feValYBpZtR+6eB6dk2O8awmF3OWY2VnJbH0k/kR9MV4T+SfJM7ghai+NZz5Bf9uY\npyqcmGsb24SIs4FTk3dw5Yd1I3ymVzSEa2/gCklfpsWi8QCpf8UD/rtm9nIyz45pxcGqXSSNoHpG\nqXozubYLKGQ4F1c0/8RDsP4iaW9cGTbyPK9m1Tm0SlvRh79v59vSmvDvqP8gtgTweuZ1SyQHRkvb\naElZJTgMd1j7fUFxZ1EndLEAHZNjvJuJNeQORtJGePq+FVLTk8Ap1mIt4/RjO4eZTWiy373A0Wb2\n51z71sABZlY0jWdLSHoQ2MjMJlZZ2+5FkfVsScLNb3vT81D6Ae4BO6qI2VXS7viP4VTgv7kx1fR8\nzcn4Dv4DeREePrJiWt/fG/dqL7ReWgaSPoUrwy2q7R8sk6SkxYA1gGcLmnf7HXniln9YjWQgJZ5n\nZ3x2fA6eUjQbhfABXsXtX9X6VpE1iTZCF5Nz6A6Wwr+C/iFmyB2KejLrXEnPrG0d4HpJI82s6YpC\nySmkFY/TUtJ4SjoIeNXMzs217wZ8ysyOrdH1GqCSzartte2kcPeTdBge+zsFGN2kN+5R+PrdMeYx\nya3wC2BPM7sged9WuIuenOMDxSm4KfYLeBjWt/F18l8A+w3wWAAPKzOvuNR21aUkr6w64EtR8Lcz\nKdU3LMX7SjoO+D6eXnR7q1NRylJWsuSEeFfFU7tF2q2S1kk5xrsXM4utAzd8nXPvKu17AS83IWdB\nfBb2Cp6JaVp2Kyjjv3hCkXz7usDEJsYyFk+/l2//Am6iHfTr3sRneRNYqk0Z7wGLp9fvAEum10sC\nUwf484wH1k6v3waWTa+/AdxZoP82eL7le4AHs1uT4xiGhzy9nO7XyjU5Ati9CTkH4DHqlfdX4Ilc\nXsYjDYrIOCm3nYwnf3kHOL2gjKeBDdPrL6bv/PvAtXgcchEZ04AFqrTP18T/8PfSNRjR4v0xEX8o\nnpY+/5vZbSDv1W7eYobcucwNVAsPuglPnFCU82jfGeMm4GhJ+TSev8LjZ4tScXTJ8zru+TwgJNP9\n/1HbwWXZav1ynA9sh1+DVnkVDycbm2v/Em14B7fI7PR8NxPxKkej8fXxussAKrc29M/xkoD74wUc\nKjyOz9LOLignXwd8YzyyoJk64Kvl3k/H79X96O2YWI9F6Cli8i08NO9MearSfxSUUSuj1ydw03UR\n9sO/k1arpI0kHLn6nVDIncu1uNkwXxrtm3gCiaKU4YxRVhrPcXgx9bx383r4DL4qGeeWhlixakBn\n4j/QF9H6Q8owYH9Jm+EZ1PI/cEVSX/4Bdy7bLY3h05K+iK9vH9HMYNR+msingeXwh4NHgB+kH+49\naex5XmZt6J2SrFslZR2WHgGaKWDQdh1wK5DFrgDv4jPZF/GHgErGrKlA3SQ26kmZacAeKSlOhWF4\nZreiqU7bWuqxXBKdoH8IhdxBqHfO2ieAn0v6ClBx3FgHV14nNiG27YLv5p6/q9A7jee5NJnGE1dA\np8grUGW9m4+j/mf6afOjrsuWwFZmdkcbMlbG19DBQ2GyFFXwx+DK81bcA/523Cx4gpmdVnQgapAm\nkmI1iU+lx0pxGG6d2QGfge3SoG+ZtaE/Q/WymDPhntZFabsOeEpks7Xl1p1TtrWrrVh2q5uBs9KD\n7LJ49jBw34WxDfpWUo4KfzDK1j7+IPXfs8AYsDbDGCVNAxa2nEOopPnwrHcRh1wGg20zj61nw2eO\nRbbnm5C5KZ4kYfEO+HzCze1T6FnHnoyHpmgAxzEW92ge9O88jWcW3DlubdwLvtn+o3GnrJbWB2vI\nHIGbqucvcOzzwGrp9f3AD9LrTWlyfRF4APheep1dVz8UuKMJOaen7/lm4I3KdcXrABda18ZN1NXW\nbhcAPiwoY+40lmuAzTPthwE/Lyjj78A8g3yP1roWnwamDObYummLGXIHYWalx+xSUsF3Va8YNRJ/\nOChSMQrz/+ADJB2Bh3JNAZ6xXD3gBuOolgsafCb4vhXLDXwocKikXcysSHH2/Bhmxsf+eTMro9LN\novhs7nYzmyJJ6VoV5TPAr63NnM1ZkqwHCx5+G+789RBuOTlZXr93TeCqJk99OHC+pM/gs+KtU5jR\nTrhloygjcYW8CLC/pXKDuBXgt/U65rJrrZgyy1UYhs+4Xy4yCPPZdR8LgZmNKtI/Hfux6TyF7NHk\n/VGpyDUSX0OvFmde9XegZLN50ICIQ+5yVELBd/WuGPUL4HPWZMWoJOccPCHJO7n22YHTrEYqwtyx\ntXJBV3gJdy46zGqEI8krGy2X5DxP34eUtQuM43k8cX/LVW6Sue9yPMuVAcuk63oO7r1eKNxI0lXA\npWZ2eZPnL6UakEouoJCSpRyKL4/MgT8YHG41KiqVTe4eq7bcMwWvB9zQsUtehORdS0le5BWf/h++\nJLWX9c42V0/OTrgjYqWM6GjgeDO7sGD/w/HMfCfiSYKOAhbHHc0OtxqJbNRTaWox/H+rmtn8UMsl\nDQpaIxRyByPps/jMo9oT7YDVy1UJFaOSnFrrUPPj8ckNLTZppv4rXOlWclevjXvmHoVXX/oZ/mNV\n1QM6zdBrYmaHFBjH7ng94x3NrKX4TkkX4ObPPfCkL5XruhmeJ/tzdfpm00R+Cldg59JEmkh1WDWg\nNItbDy960nS8sEoqzpKSkQh/WFubnqxb4Epognm2uCJjegxPnnO9pJWB+3DHrq8CT5nZrgVk7Is7\n+Z2Ox6iDO2vuBfzCzE4uIOM5YB8zuy79D3/ezJ5LM+B1zOx/G/T/O76eXugBImiRwbaZx1Z9w52d\nJtPzA/sQ7qgyCbitQd85s6/rbQXHMgVYLL3OrustQ4H1o3SuufB1qKVyY5gHN0e+UnAsNwHbVmnf\nFrg1vd4R/7Hrz+/noXQtpuIeyk3H3uJhT6tWua5L4rOqen2nF9wKxamWcD3mwR+Ezk7bfsC8LciZ\nCizR4hg+Xuds95rgDmTntjqWjJx36Yk1/yUe9gS+Pv9qQRlj8ApY+fadKRi/n35LFk2vx+NVtCr3\n2ltNfJ5ZcOvS8IG4r2a0LdaQO5ejcW/bUemJ9jt4nOhFVI9PzjJRUmUmOona5f6MYh6nY2itYlSF\nyhgMN7XlMTzrVREqM4M8D+GJF8ArAy1aT0hai94af0A4yTwt56r47KdIgYkyqmHNTvXMafPSk5ms\nKlZe8ZG2kbQ+Hqb3Nu7UBbAPvk6/lZnd3oS4x3ElkQ+Na4iVWJzFfJb9bdqvpPQB7sMBHmpX8Xh/\nE38gLcLC9HixZ7mb4vH7L6VjX8TzcG+KPzyuRYN7DT4u9Xg6/hAA7jH+vKTT8ERFxxQcR1CHUMid\nywrA9un1R8BsZvauvDbqNdQvRbchPWnyyoilbKliVIavpn634Q8WWRPvB8ALZlYzDjnHS8DueOWa\nLLvTE3c6H7niE1mSqf0WXBkugs+EJuKJPj5Dz49OTaycalh34NaBionc0nrs/rhnbcsUSROZ1p4L\nYfUrNv0GXwv/oSVTbjI//zbtW7noeXAfhRMkHYJ7XE/OjePtJmS1yzX4GmtDk3Ad7gROSolA1sbv\nMXCF9lJBGc/iFqD8Esx2+Dp9Ef6MW93+jZdB/WNadlmUYp/vGHxN/yv0nhDcgs/8QyGXQCjkzmUy\nPevG4/GZ3H/S+7prtpYppWcllPuzNitGVcYgaQngRUu2rxb5GV5laQt8PQ7cm3d5PH0j+FP/ZXVk\nnIx/hv3wWV2F64A/Fh1ISsaxDf7dHG9mb0paHXjNzIp44e4P3CppTfy7Pg6PT50XX0stOo4D8EID\nl6X3VwDfkTQeL1JRy/HsrRrtzbI0sI1l1lXNbFpyFNupSVmVON1r6W3ZaWjRycXx18WKVeN6Bp/l\nr0f1h4MiMvbGH0y2wR9YKvfFFjS2dFUYBVyWLBGVNeT1cAW7bREBZnZg5vVlkl7ELUrPmNlfCoj4\nFp6K9B71rjr1H/z+D0ognLo6FElXA9eZ2R8knYBn6DoPN7NONLONm5DVbhanrKyWKkalvuvX21/U\ntJkU+w/wWQb4Gu4ZVjDpvbzyzZpm9mzOSW1xfO151gIyVsFnB2/h3qrLJRlH4mt1hRSRpLnwH+2s\nR/FvCprNKzLG4JV47panibwcnz1tm8ZSJE1ky6TZ3/FmdnWu/VvAgWa2ThOyNqi3v94DZsYjuBFm\nxapx1ZNXSEZZSFqDvpXfTrQBqr6UQiZXSvd49n9mVTxcb66BGEe3Ewq5Q5G0JK74Hk1hQSfSE0qy\nr9WpEpOTUzeLkxWIQ05m8jvN7LZc++zAfmZWaJ0thZPk+Xg8NkDZfiS9DmxiZg/nflw2Bs4zs88W\nkHEL7ry1f07GusDFZrZ4g/7DgYOBc8ysqOmylqwpeDGIcZJOBWY1sx9IWhb4t5nN0478AuffDp/d\nn4Zn5gLPKrcXvrTwsZ+BdUgJxYFCUl1fBjN7cQDHshzwY3or9dPM7OkCfW8HrjCz09L9voqZjUlr\nyMuY2eb9NvAZiFDIHUi74R85WaNxM+DB1mLiiKRIPwQOMrOTMu0L4t7RRVMR5p+iZ8YT+B+BZy26\ntaCctmb8Kc53LnwWORFYBV/Lvga428wamj4lvYV7qj6XU8iLAU8XnGW/i886xjY6toGcV3CT8d2S\nnsZDYa5IP8D3mVkh5yF5Mo9aiSNqFh+o8aDVqzvJ5FzkXknf7+70KI7/4A8uLZnYpdaSaZQhQw3i\n5gtej6/hnuE35to3w+O/bygg4zt4par76Z2Kdy3gf8zsTw36fwm4AV/S2QU4A88uty6wgZk90GgM\nQQGadcu1lJlUAAAgAElEQVSObWA22gj/yMmZTAqnaUPGdFx5vYE7QM2S2hekhLAaYAPggYLHboXP\n9Kfj3tsTM1uhNI14iM7f0+f5CPfofR93wCmUuhL3eK+ki8yGLG0CjCso4xo8sUq716+MNJH7pM9x\nWroWv0/yJgFHNei7WNGtwDjWxMt9voRn+boKd9Z7gxSq08R12QkPG5yatkfxuPEBk4EvRWS3NfHE\nIE/icb1FZDwKbFalfXPgkYIynsMTgOTbDwOeKyhjKTwf/b14YpM/Aiu3e//GlrnGgz2A2Gp8Mf4k\nu1EJcq6iStxukzKm47PRpdI/4t3pfVkKeXkaxN1mji0tbzP+ILAPbjrenCbyaQNn4Z6rMydFtgQ+\ns3wQOKWgjEolpRNwj/pvZLcmxjIz7ux2KukhIbWPBPYoKOMpYPv0OvuAcTgFa/+WseGe5+eSiXPF\nnU/Pw9cqi8rZF38YPTZzTY9LbSMHSkYd2V/Hk+oUOXYKVXLR474LkwvKeA9Yukr7MsB7A/X9xlZ/\nC5N1hyJPuXc0HhLTVPhHGVmccvI+zrCV4ncvx72B9wSuteIm61XyTXhs5IH4D/CXCsiYjD+Vt1Qv\nWJ6H+q/A3mZWNGSkmpy5gCvxGc8nca/zhfA11C3MbHKd7hUZ9Uy9VvS6lkFy2lnBPEf5BHyN/RFJ\nywD3mNl8BWSsSHVzd8N7LCNjCv5Q8VSufUXgfjMbUb1nHzljgFGWW8KQp5L9pRXIG1+GjDqyl8Zn\nt7MXOPZV4H+trw/Hxri/wgIFZFyPrwGfm2vfFTdZb1alz5yV3xnVziEPDHg4WtcSYU+dS8vhH1RP\nWnFolbaiiUE+zudrZm+nNa1TapynHg/Ts56Y5R6gYR7rxI24EmxJIZsnfFiDNoutm69nbpJCYj72\nkDazW5qQ0XLyCpWUJjLDq3i41Qt48oh18BrES1A9n3N2LEvi1oKV6f39Vq5xMw8Wb+NKPV+wYBF8\n5l6UMpJptC2jiiKrPIT+kuIxxNfgZUu/bWbPJblL446eRR92rgWOTfd+1vHuu8Co7D2UuV/KTjAU\nNCAUcudSL6FH3UQL7fzQ12BXMjGr5kUb9pH0IG72LUp+RjEdeN2aq7h0HXB8mjG1NOPHvc53BX7e\nxHmBjzMWbWRmf01NWwKfSK+/JmlTPNl+zc+UlyHp6IwM8HXtujLwh6GF8LXseg9GRX8s26nYdCq+\nDr9R+rs2npzlRNyU3gyXAWdL+hk9ynA94HjgkibklJFMowwZ1RSZ8HXx7fseXpX98ZjlpyRVPPIX\nwetnF72+lQpXP0pbtX3Q+37ZEF+amkA5CYaCBoTJeogg6ZP4P/AewBqNzJmSNsSdfdbJm5OSufVu\nPHzqxmr9m5Cxn5k1THAgz0C1Cx5HvTj+jz8GN/teaAVvxDLMvJJOwRXyU/hafX45YP86ffcEvm5m\nW6X37+BewFPSIcsDx1mdhP8FZRxvGY/2/kZtVGyS9AawoXmI3lvA2mb2dLp/TjSz1ZoYxyy48t2T\nngnDh3hmukOsp4xiIznfwZX7LVRJpmFmfx4gGV+ht0KejhereBaY2cymVOtXRY5wh8FV8fvkETO7\no0jfdkj/b/fhPhOXWq5SW1Ayg72IHVv9Da83ej6epH40nqJurQL9rqWO4wnuzPTX/paRjhO+bjsd\nn4FdgodgPJLarh7ga3pHna2u41A6ZqvM+48doNL77wH/6m8ZmWNnBm7FY0HbuSaLUsWpLX13izbo\nO5EUEYB78341vV6Kgg5D+fsMzwi3ctpG4Ov0dzX5mVbHPYEfSNsfyTi9DZSMKjI/gTuM1S0ugWfS\n2jLXtjPuUT8BOBP4RAsydsIfhhvKAL4MnIMvJbyLO9d9uZ3PH1ud72uwBxBblS/FTZEH4rOT1/BQ\nlA+BFZuQ8QLupFNr//J4Gst+lZGO2zX9Q3+1yr4N074+1Wxyx10PzJV5fyAwd+b9fMATDWQsWU3p\nNPndjCfj8YrPdrLvl6VB9ZwyZOTkvU77CnkaqVJSrn0+GnjS4w8Y30qvL8bjVdfDHyQfL3j+KbXu\nAbwIx50UqOCFx6Xvj89o78M9pGdr8lqUIeMTuFPm/bglqXJ9dsUdAMfhZRnrybghewz+cPIBHnq0\nb7qPftmCjA+bkZH5DnYF/ok/RI8GDgAWaue+iy13nQd7ALHlvhD4C75eezEeGjEstTerkKdSJcwh\ns39pGpROLENGOu4mPIVirf0HAzc2kNFLYeBKPDurbBiCVUXGZcCCTX4/U/A0mbX2Lw9M7W8ZueNP\nBo5p876bDnyqSvtiNAitATYjxdTiYTRP0WOaLRS6h+d6nkIu3IseZTwa9/RvJOcQfA3+b/ja+hQ8\nqUgz16IMGcfi68dX4Ar4Q3w2+igeHz6sgIzxeIrXyvuj8Ix5lfffpfFDaNsyqshcOsl5EX9AuLad\ney+2ni2cujqPLYBfA7+zNsJygJeBlfC1qmqsgv+z9reMynE112Xxp/hG2bHynr51PX8LyvgaXrGq\nGV7Cr0mtdIOr0LiKTxkysgwHdkthMNVC5Pat1VFeAAJ8nfOIFP5UYRjwBdw7viaW8UNI9+zykubF\nc64X8g0wsytThq5LJH3dzP6RUrP+DX/Y2sCK5ffeCfiRmZ2ZPt/GwHWS9jB3RixCGTK+i8/4r5VX\nF3sU/55WLXpN8AQ2r2Xeb4D/r1S4D3fu6m8ZvTDPAf8r3IJ2ND5xCEogFHLn8SU8beADkp4ELsTX\nW5vlevwH9m+W89ZNXr6H4eu6/S0DPJzmtTr7X8N/OIYC1wOHS7quxjUZhXuC97eMLCvhCUmgp+BG\nUSoOV6LHJFrhA3yd/4RqHVWgfKOkj/CQqputQVUh86pi8wLXSPomnpTk07gyLlqec1EyCsfMbpFX\nJ/o0xR9yypDxWfzhCDN7XNL7wMlNKGPw/4slgHHJ2W11etcN/yS5KIN+kvEx8gIxu+FlVKfjOQnO\nLto/qE8o5A7DzO4B7pH0Uzy8Yje8HvFMeNzrOCvm6Xgk7tE8WtLp9MzGlseT/g/DzU79LYN03Ed1\n9k+j8b1o9A0faTZEoAwZv8JDYZ5O12R0al8Or9o0nL5hMv0h42PMrOWQlEpfSecC+xS8tyoUyS09\nE27G3kPSCWZWLR4+O57jklK+FXde+oo1V3xjOL7UkuVD3PltIGUMo/fDzUe4U1QzXA8cIy+v+S08\n21bWs3oV3ImuX2VI+jQeIbELbq6+G7doXW4FEuAExYmwpyGAvEjA7sCOwNz4bKNuMojUbzE8XGQz\neidruBHYy8zGDJCM6fiM4/0ah3wC2NzqhCxVkbEVHjtb+UEoQwYAZrZ1g8+zBH5NNqH3NbkZN3U2\nTFpSkoyGM1Q8FOw7bcpoeE0aIWlL4LdmVrX6UZVxfA2fnfeqK13gu6l2r/X5nuvJ6ScZTd9rkubH\nY8C/hCvznS0TaiXpVjyLWs14+nZlSLoB2BjPJX4BvpbesDpU0BqhkIcQ8ipQWwG7FVHImX7z4E+2\nwguST2zh3C3LSLOvhpjZrp0uIydvXvyaADxrZm8W6VeWjE68JnXOMzf+Y15VAZU1jk65JmVe1xTz\n/66ZTcu1z5vaa8aItytD0rW4Sfqv+b5B+YRCDoIgCIIOoOwUi0EQBEEQtEAo5CAIgiDoAMLLugOQ\nNB/uNDWWvt6dQRAEQ5FZ8bz1N5rZf8sWLmlRYP42RLxhZi+WNZ4yCIXcGWyGVyAKgiDoNnbAMw+W\nhqRFZ4YXCgdQV+c9SSt0klIOhdwZjAUP+K33uPc3YPM6+8/k+wVO1UgKeLbCelwDfLPAudqV0SjE\nschnKUIZcoaSjCL/9tfjkUf12KTB/l/hWVHr0Shq7mw84q8e4xrsL3q/1rvfBvJea1Rq+RIaV25s\nlNRsIO61N0iVO8e2eaJqzP8hjX8za5FGNiJ1D4Uc9GIq+J1R719x1gb7i9VMbywF8jXVq8n4bIFz\ntSvj7Qb7i3yWomNpV85QklEkv8WseGKqenyuwf5PFjimkRvLCLxoVD0aRYoUvV/r3W8Dea8t3mD/\niALHlDGO0mT02zLcQjS+S6vRqYovnLoaIGmMpLp5liVNl1Q4LjgIgiBon+H442WzWyjkAUDSOpI+\nklQ3Z24/sBC9E7YHQRAE/cwwXLk2u9VM5zfIdJVCxhebfg2sL2mhegemrFelYGYTzKxN/4IgCIKg\nGWKG3KGkUm3b4fmBr8MToVf2bZDMyptLul/SVGA9SUtKulrSq5LekXSvpI2qiJ9T0sWS3pX0kqQf\n5c7dy2Qt6TOSLpH039TnXklrtfsZV2pXQGlSVmt8yIDIKOeKlCOnm2SAF35qly1LkLF+CTK67V77\nQgkyOule60wk7ZWWLKdIuqfRb7ikHSQ9LGmypFcknZ1SkxamaxQyroyfTPVYL6K6a+bRwAHACnh9\n0jlw5f1V4PO42flaSXkPkJ8BD6VjjgFOraG4Kw8Gt+PeDlviv2xHU8K1LuMnshwpq3eIjHKuSDly\nukkGwKolyOgUhdxt99o6JcjopHutdfrLZC1pO+BEvFTlanihkxtTsY5qx68HnA/8AVgR2AZYGziz\nmc/TqTP3VtgNrx0M7o8/p6T1zez2zDGHmNmtmfeTcMVcYZSkrYFvAL/NtN9lZsen16eniz8SLxGX\nZwdgPmB1M6uUp2tYESkIgiBojorJupV+DRgJnGFmFwBI2hP4Oq5njqty/DrAGDP7TXr/gqQzgP1L\nHlfnk8oTro3X+8TMpkm6HJ8lVxSykQqGZ/rNDhyGB1wujF+PWfEC5Vn+VeX9T2oMZ1XgoYwyLszf\n0smzrEQnPIcGQRDU4zHg8Vxb/ycdrMyQW+lXC0kzA2uQqUluZibpFuCLNbr9CzhK0hZmdoOkBYHv\n4hbYwnSFQsYV7zBgvKRs+/uS9s68z0f+nwhsBOyHF+meAvwJmKWNsUxptePmlBPpGARBMLCsTN+p\nw3iatNg2TT/NkOfH9clrufbXgOWqdTCzuyV9D7hM0qzpFNcCe1c7vsVxdT7JW3pHYF+8uHuWq/GU\nNrUKaq8LnGdm1yZZc1A94j6/aLMO8GQNmY8Cu0ua28wmNfwAQRAEQUtU1oTrcRdwd67tvZLHIWlF\n4FTgl8BN+NzqBOAMYI+icoa8Qga2AirFz9/J7pB0FX4x/g9Qlb7PAFtL+mt6f3iN49aT9DM8B9+m\n+IJ9rbyCl+D5Aq+WdDD+mLga8LKZ/buZDxYEQRC0x3ppyzIGOKh2lzeAacCCufYFgVdr9DkQ9zU6\nKb1/PEXj3CHp52aWn21XpRu8rHcDbs4r48Sf8LWAlameX29fYCL+EHUNvoz7YO4Yw03ba+Ke1gcD\nI83sltwx/sLjkTcBJuDrB4/int3Tmv1gQRAEQW36Iw45/YY/gC9nAiBfC92IvpPtCiOAj3Jt03Hd\nUG2SV/PzDGnMrGbKSjO7j571+9Or7H8B2DjX/LvcMUsWGMOw3PtxwLaN+gVBEASt049e1icB50l6\nALgX97oeAZwHIOlo4NNmtnM6/i/Amckb+0Y8xfbJwL/NrNasupVxBUEQBEHn0R9e1gBmdnmKOT4c\nN1U/DGxmZq+nQxYCFskcf37yQdoLXzuehIfFHtjMuGTWqFJK0N9IWh14AL5PO37Wtshh5Yxn3KhS\n5ATdzmzti9j4gPZl3HJU+zJKo1My6Daq2FaUwv5IVXgY2ABgDTPLLwW2ReU387fAMi30fwZI6RZL\nH1s7xAw5CIIgGJL01wx5sOgGp64gCIIgGPLEDDkIgiAYkvSjU9egMORnyPlKS1X2byBpmqSyFlWC\nIAiCDiDqIQ8wkhaUdJqk5yRNlfSCpGslbVhQxF3Awmb2dn+OMwiCIBhYuq0ecqeOCwBJi+GB2G/i\n+aYfx6/n5nhc8YqNZJjZR3iSjiAIgqCLKJI6s1a/TqTTZ8i/wzNcrWVmV5vZs2b2pJmdTO/80p+S\ndFUqDD1a0laVHclkPb1ispa0s6SJkjaV9ISkdyRVqnOQ6bdH2j8l/f1hZt/Mkk5PRainpCLWB2T2\nzyXpLEkTJL0l6RZJq/TXRQqCIAiGPh2rkCXNA2wGnG5mfep45UzQhwKX4ikyrwcukjR39vBc9xH4\njHsH4Mt4ucUTMufeAU8SfhCwPJ4u83BJO6ZDfoJXX98GWDbJGZuRfyVeE3kzvDr6g8AtuTEFQRAE\nbRAm64FjaTwHaK1KTVnONbPLAVJBh33w+sg31Th+OPADMxub+pwOHJLZ/0tgPzO7Jr1/QdLngB8A\nF+IZWp4xs0pe03GVjpLWw/NeL5ByogLsL+nbuAI/q8DnCYIgCBrQbXHInayQCyfkxqtjA2Bm70l6\nG1igzvHvVZRxYnzleEkjgKWAsyVllecwPB0aeD7TmyU9jRek+KuZVUo/rgp8EngzV5t51iS3Dn9L\nh2VZib51RoMgCDqJK9OW5a1+P2u3hT116rjAs5sZbjK+psGx+Xx1Rn1zfLXjK9pzjvR3DzypeJZp\nAGb2kKTFgS3w4hSXS7rZzLZN/V/Bc8blHyoa1EfenHZSZwZBEAwO26Qty8epM/uNUMgDhJlNlHQj\nsJekX5vZlOx+SXOZWemPYGY2QdIrwFJmdmmd494FrgCukPQn4Ia0Rvwgnnh8mpm9WPb4giAIAidM\n1gPLXsCdwL2SRuG1hYcDm+LruZ8rKKcZ8zfAKODUZPr+G/AJfF14bjM7RdJI3Mz9ED673hZ41cwm\n4c5b/wKuTp7Xo4HPAF8DruqkROZBEARB59DRCtnMxqSqHj/HvaAXBl7HFfO+lcOqdW3wvtF5z5Y0\nGdgfOA6YjK9Tn5IOeSftWxo3Y9+HK9wKXwOOAs4BPgW8CtwOvNbMOIIgCILaDB8GMzc73QKGG2kB\nsrPoaIUMYGav4V7T+9TY38f6YGbzZl7/k4yFwszOB87PHX8NOStGMldXNVmb2VnU8ZY2s8nAT9MW\nBEEQ9APDhsHwFoJ3h00nFHIQBEEQlMXwmWDmFhaEO1Xxdeq4giAIgqAuw4e72brpfi2YuQeCUMgd\nxbdoJ+ZY41oJAOjLQrZ92zJe1eMljGRsCTJWKEEGuF9eu/ylBBllfMf5qL9WWbp9Ebcc1b6M3/+8\nfRkAe95QgpBPliBjSuNDGvJY40MKcVIbfceXNIbaDB8GM7egxTpV8XVs6swgCIIgmJHo1AeFIAiC\nIKjPTLQWVDy97IGUQ8yQS0bSKEkPDfY4giAIup5KZpBmtw7NDNKVClnSgpJOk/ScpKmSXpB0raQN\nB2gITcU9B0EQBC3QijJutYjyANChw2odSYsBdwNv4iUWH8c9YTYHTgdWHLzRBUEQBKXRau7MDoxB\nhu6cIf8Ov9xrmdnVZvasmT1pZicD60jaWdJ0SdPS38p2aEWApD0kPSFpSvr7w+wJJH1G0iWS/ivp\nXUn3Slord8z3JI2RNCkdO/uAfPogCIIZhcoacrNbh2q+rpohS5oH2Aw4yMym5veb2duSLgWy8Q1f\nBS7Ac2YjaQe8HvJeeLmS1YA/SHrXzC5MivV2vAbylnhazM/T+yteGvgmnkJzXrwIxYH0rrkcBEEQ\nBB/TVQoZV4QCnq51gJm9D0wAkLQU8Btcgd+WDvklsF9KpwnwgqTP4cUsLgR2AOYDVs9UmxqTO42A\nnc3svXSeC4GNCIUcBEFQHl1W7qnbFHLh/CuS5sQzNfzFzE5KbSOApYCzJWVzVQ8HJqbXqwIPNSj9\nOLaijBPjgQUaj+ow+iYW+CaeMCQIgqBTeQx318nSx0hZPq06aBXoI2kv4Gd4Od1HgB+b2X01jj0X\n2Bl36M3qof+YWeFsT92mkJ/BL8jywDW1DpI0E3A5MAmf+VaYI/3dA7g3163iBlAkjU4+FZJRaNVi\nFO1k6gqCIBgcVqbvb9d44Mz+PW2rccgNfo0lbQecCHwf1wUjgRslLWtmb1Tpsg9wQOb9cLwq4eUl\nDmtoYWYTgRuBvSTNlt8vaa708hS8lvK3zOyDTP8JwCvAUmb2fG57IR32KPB5SXP364cJgiAI6tN/\nccgjgTPM7AIzewrYE3gP2K3awWb2jplNqGzA2sDcwHnNfJyuUsiJvfDLfa+krSUtLWl5SfsAd0va\nBfghfoGVYpYXzHhBjwIOkvRjSctIWknSLpJGpv2X4HWNr5a0rqQl0nm+MLAfMwiCICgbSTMDawC3\nVtrMzIBbgC8WFLMbcIuZjWvm3F2nkM1sDLA68HfgBHxx4yZgUzwueQP8c1+Lz4Yr236p/9m4yXpX\nfDb8D3xt4Pm0/0NgE9wx7Lp0zAF0bGRbEARBl9I/iUHmxyd1r+XaX8PXk+siaWFgC+APhT9HotvW\nkAEws9dwm/4+VXb/DVe29fpfClxaZ/84YNsa+w7DvbOybacCp9YfdRAEQdAUBdaQL3ndtyxv9e/0\naRfcCbimH1MtulIhB0EQBDMABcKetl/YtywPvgNrPFizyxu4xXPBXPuCeN6JRuwKXGBmHxU4thdd\nZ7IOgiAIZhD6wakrLUs+gOeOANzZKL2/u95wJH2FFDrbyseJGXJH8T7tFSfv41jeEq/OtmTbMr5k\nz7Ut4041/YBZhRVKkAGeDr1dVilBRu3H+uLko/Ja5c0SZOTj7ltgz7JquTxZgowyflK3LkFGGZ8F\nPNFgq0wuaQx16L845JOA8yQ9QE/Y0wiS17Sko4FPm9nOuX67A/82s5a+gFDIQRAEQZDBzC6XND9w\nOG6qfhjYzMwqq9ELAYtk+6RkU9+muu9SIUIhB0EQBEOTfkoMAmBmvwV+W2NfH8dgM3ubnuRSLRFr\nyCUiabFUOaoM22QQBEFQj/5LDDIodJ1ClnRuprziB5JelXSTpF3TwnxRORskOXM2OYSyFrSCIAiC\neoRCHhLcgNv4FwM2B27D44D/kvJYF0H0TRRetF8QBEHQ37RSC7mydSDdqpDfN7PXzWy8mT1sZsfQ\nU594l2qmZUlzpbb1JS2GK3GAiWm2fU46TpL2l/SMpKmSxko6KHf+pSTdJmmypIclrTMQHzoIgmCG\nImbIQxMz+zteQqsSU1DPtPwi8J30ehlgYeAn6f0xwP54Nq4VgO3oGyx+JHAcXqpxNHBxEzPzIAiC\nYAZkRvOyfoqeGmE1TctmZpIqQZavJ+85JM2Bu7T/yMz+mPaPAf6dE3G8mf0t9RmFFwpdGlfOQRAE\nQRkUyNRVs18HMqMp5Mq6cKusAMxCjzm7Fo9lXo9P512Ahgr5V/RNlLBl2oIgCDqVB+ibtKadJEcF\naXU9OBRyR7ACPqOdnt5nZ8lFUjEVvcOyqZAqDwAFTNYH42WagyAIhhJrpC3LOLzgXj/SZTPkGWZd\nU9KGuLn6SqCSbSWbcnw1es+eP0h/s1/dM8BUMjlOqxBhT0EQBANBlzl1desM+ROSFsQv+4J4bcoD\n8RrIF6Y14nuAAyWNTccckZPxAq5ct5J0PTDFzCZLOhY4TtKHwF3Ap4DPmdk5qV+EPQVBEAwEMUMe\nEmwOvIKbp28ANgD2NrNvmVllBrsb/lXejycS/3lWgJm9AozCvapfBU5Lu44ATsS9rJ/A6yZ/Ktu1\nynhi1hwEQRDUpetmyCnHaJ88o1WOewr4Uq55WO6Yo4Cjcm0GHJ22vMwXqsh4K98WBEEQlEA4dQVB\nEARBB9BlJutQyEEQBMHQJBRy0H8siicGa5WSvs6pb7ct4k4tXcJASpAx/2fblwHwxjMlCCnj+1m9\nBBmPliAD4J0SZMxWgowyxgEeFdkBbFPCPXtlWdeknXv2/ZLGUIcuM1l3q1NXEARBEAwpYoYcBEEQ\nDE26zGQdM+QqSNpZ0sTM+1GS8nnhavUdJemh/htdEARBAHRdYpAhp5AlnZvKJE5Lfyuvry/5VNnY\n4eOpn52rXt8gCIKgP+gyhTxUTdY3ALvQOytWv3kQmNl7wHv9JT8IgiBogXDq6gjeN7PXzWxCZnsL\nIM2Yd5d0laTJkkZL2irbWdI3Uvt7km6StGPqN2e1k+XN0JK+Iunfkt6VNFHSHZIWyfX5nqQxkiZJ\nukTS7P1xIYIgCGZYumyGPFQVciMOxVNargxcD1wkaW4ASUsAVwBXAasCZ+F1DxuZmS31Hwb8Gfg7\nsBKwDnBmrv/SwDeBrwFfx1N3HljC5wqCIAi6lKGqkLeS9E5me1tSVuGda2aXm9nzeE3DOYC1074f\nAE+Z2YFm9oyZXQ6c18S550zbdWY21syeNrMLzeylzDECdjazJ83sLuBCmluDDoIgCBrRZTPkobqG\nfBuwJ73XkN/MvH6s8sLM3pP0NrBAaloWuC8n796iJzaziZLOB26SdDNwC3C5mb2aOWxsWneuMD5z\n/jqMBObKtW2ftiAIgk7lYeCRXNvU/j9tl60hD1WFPNnMxtTZ/2HuvVGiNcDMdpN0Kl5VajvgSEkb\nm1lFsbd4/pMpJxNTEATBQPL5tGV5mZ4ief1ExCEPeZ4G1sy1rV3twHqY2SNmdqyZrQc8DvxvGYML\ngiAICtJlJuuhqpA/IWnB3DZfwb5nAMtLOkbSMpK2BXZO+xrGD0taXNKvJK0jaVFJm+IJqJ9o7aME\nQRAELTETPWbrZrYCmk/SXilSZoqkeySt1eD4WSQdJWmspKmSnpe0SzMfZ6iarDcHXsm1PQ2sSHWl\n+nGbmY2VtA1wIrAP8C+85vFvKRbL/B6wPLATMB++PnyamZ3Z5GcIgiAIOhBJ2+E64vu4j9FI4EZJ\ny5rZGzW6XQF8CtgVeA5YmCYnvUNOIZvZrvgHrrW/jzHCzObNvf8r8NfKe0k/B14ysw/S/vOB8zPH\nHwYcll5PALauc/6Pj820nQqcWu9zBUEQBE1SMUG30q8+I4EzzOwCAEl74iGsuwHH5Q+WtDnwZWBJ\nM5uUml9sdlhD1WTdFpJ+KGlNSUtI2hH4Gc2FPgVBEASDTT+sIUuaGVgDuLXSZmaGR9R8sUa3rYD7\ngQMkvSTpaUnHS5q1mY8z5GbIJbEM8AtgHvwp5njgmEEdURAEQdAc/eNlPX864rVc+2vAcjX6LInP\nkEDNHNgAACAASURBVKcC30oyfgfMC+xedFgzpEI2s32BfQd7HH2Yg/a+kUkflTSQa0uQ8XIJMpZu\nW8Llr+9TwjhgW51Vipz2KVR0rAHzNj6kEFNKkDFbCTIuK0EGlHdd2uTKehGdA00733G/lRfooeLU\n1Uq/cpkJmA78r5m9CyBpX+AKST8ys0IXY4ZUyEEQBEEXUGAN+ZJ/wiV39G57a3LdLm8A04AFc+0L\nAq/2PRxw596XK8o48SSevOqzuJNXQ0IhB0EQBF3L9hv4luXB52CNkdWPN7MPJT2Apzu+FkCS0vtf\n1zjNXcA2kkZksjQuh8+aX6rRpw8zpFNXEARB0AX0X2KQk4D/J2knScsDvwdGkJx/JR2dUihXuBj4\nL3CupBUkrY97Y59d1FwNMUMuFUlLAc8AK5lZJAoJgiDoT/ppDdnMLpc0P3A4bqp+GNjMzF5PhywE\nLJI5frKkTfBcoffhyvky4JBmhjVkFbKkc/EMW0ZPkQkDlklVngaLhtm+giAIghLox1zWZvZbPGFU\ntX19cmGY2WhgsxZG8zFDViEnbgB2oXfVp9fzB0ma2czyBR/6CzU+JAiCIGib/ksMMigM9TXk983s\ndTObkNlM0h2STpF0qqQ3SFm5JM0j6RxJr0uaJOlmSStVhEk6QtJ9ad1gbDrmj5JGZI6RpIMkPZvy\nlY6RtH9mTAYsI+kfkiZLekhS08UrgiAIghmLoa6Q67Er8C6wDrB3arsKLzi8CV7x6THgFklzZvot\nB3wtbVsBGwP/l9l/Ah7DfCiwAl6seEJmv4AjgV8BqwLPAxclL70gCIKgLPqxuMRg0KET98JsJemd\nzPvrzWy79PopM/t5ZYekDYCVgYXM7KPUth+eVWVrelJnGrCLmU1Nx1yEu7sflhT33sAeZnZxOn4M\ncE9uXMea2U2p/y9xh4AlcOUcBEEQlEGX1UMe6gr5NmBPetZts+He9+eOXRWYG5iYm6zOCiyVef98\nRRknxgMLpNefw6/ZbQ3G9Viuv5KM+gp5ykjQXL3bZtnetyAIgo7lMbwsfJap1Q4sly5bQ+7QYRVm\nspnVyjOXz8UyBzAO2JC+jlcTM6/zzl9Gj4GjaB65rIyK13VjI8lsJ8Pw1QueIgiCoFNYOW1ZxgP9\nXJU2ZshDlgeBTwMfmFmriZZHAx/gJuwLahwTYU9BEAQDQefksi6FGUkh34gHbF8j6UDgWeAzeI3L\ny8zskUYCzOw9SccDJ0qaBtyNB40vb2bnpcPCeSsIgiBomm5VyH1mqSkcanPc+/k8vDzWeOB2entJ\nN2IUPks+ElgYeIXewePVZsgxaw6CICibMFl3BtUypWT2rV+j/V1gn7RV238IuVRnZnYicGLmveHK\n+Mgq/Z8j91Wb2X/zbUEQBEEJhFNXEARBEHQAsYYcBEEQBB1AmKyDfuPdd4G32xBQVrru75Ug44ES\nZNzStoRt9bsSxgHzfvRR2zLeHP5sCSMp41+2aPReI+YtQcZs7YuYf5f2ZQC88YcShLR/n7ifaLss\n0PiQQrzZRt9PlDSGOnSZQu7QiXsQBEEQzFjEDDkIgiAYmoRTVxAEQRAMPjYTWAvmZ+tQ23CHDsuR\ntGAqofiMpCmSxqfSintKKmHxKQiCIBiqTBsG04a3sHXoGnLHzpAlLYFnwnoTOBDPXP4+njD1+8BL\npDrHTcqd2czK8n4KgiAIBonpSSG30q8T6eQZ8u/wjFhrmNmfzOxpMxtrZn8xs63M7K8AkuaSdJak\nCZLeknSLpFUqQiSNkvSQpN0lPU9yMZX0d0m/lnSypDclvZqOGSHpHElvp5n55hlZM6VzPS/pPUlP\nSeqVZETSuZL+LGk/Sa9IekPS6ZI69BYIgiAYmkwbJj4aNlPT27RhnZnhuCMVsqR5gU2A03OlEKtx\nJTAfsBmwOl5E4hZJc2eOWRqvefxt4POZ9p2A14G1gF8DvweuAO4CVgNuAi6QNGs6fia8YtR3gBWA\nw4CjJG2TG9NXgSWBr6Rz7JK2IAiCIKhKp5qsl8aLNIzONkp6Ha9fDHA6brJeE1ggY4beX9K3gW2A\ns1LbzMCOZpYPqnvEzH6VZB8DHAS8bmZnp7bDgR8CqwD3mtlHuBKu8IKkdYFt8QeDCm8Ce6c0m6Ml\nXYdXiDq76SsRBEEQVGXasGFMG978vHLasOmUEzNeLp2qkGuxFj5LvRiPOl8V+CTwptTLBDErsFTm\n/QtVlDHAo5UXZjZd0n/xStuVtteS3I+j7CXtBewKLIpnNZgFeCgn9z9JGVcYD6zU+OMdBMyVa9sm\nbUEQBJ3Kw0C+YF4j42b7TB82jGnDmlfI04eJUMjFeRavkLRcttHMxgJIqqQamgOvtrQBfcseTsq8\nnlzjPHnnLqvSBsm0L+l/gOOBkcA9wDvA/sDaBeQWuGuOprdFPQiCYCjwefr+dr0MnNavZ53GTExr\nIe3WtH4YSxl0pEI2szcl3QzsLek0M6uV6+9BYCFgmpm9OABDWxe4y8zOqDRIWqrO8UEQBEE/MY1h\nfNRFCrkjnboSP8IfGO6XtK2k5SUtK+l7wPLAR2Z2Cz5TvVrSJpIWk7SupCMlrd4PY3oGWFPSppKW\nSWvMa/XDeYIgCIIZjI6cIQOY2fOSVgMOBn4FfBaPQ34COA4PiwLYAjgKOAf4FPAqcDvwWqNTtNB2\nBm6XuTS1XwL8Jo0hCIIgGECmM4xpLaix6f0wljLoWIUM7lQF/CRttY6ZDPw0bdX2H0Zvz+hK+4ZV\n2pas0jYs8/oDYPe0Zfl55phdq8gYWWv8QRAEQWu0vobcmSr5/7d35/F2Tff/x1/vhKihpaiE789M\nUFSJKqGUqBhrnqrE2GpjCqVaQfDFN2oeS41RQ4l5SJDUUDOZxBCEJEJiSA1JRELu/fz+WOsk++57\nzrln2Cf33JPP8/E4D/fsvdba69wk1llrr/351POStXPOOVdQmCGX/2ouYRCX1FfShBi2+UVJBW9P\nStpGUnPq1SSprDyYdT1Dds455wpprnCG3NzGti5J+wMXEcI0v0x4suYxSd3NbFqBagZ0Jzx9Ew6Y\nfVpOv3xAritDgDeqqJ9V4vkBGbSRRfL6LD7PvRm0AZ8vUk2i9uCy1ndOynY8Z1bdRn09f/lW9U1M\ne6n6NgDomkEbIzNo4+8ZtJFVuP5q/g3OyagPhc2lU0W7rOe2vTjcD7jWzAYBSDoa2AU4nLCHqZDP\nzGx62R2KfMnaOeeciyQtCvQAhueOxUBPw4AtilUFRsccBo/HKI5l8Rmyc865DqmZRSrcZV10yXp5\noDOtn9T5hFSwqoSpwO+BVwlRJI8CnpK0mZmNLrVfPiBnTNI2wJPAMtUsXTjnnCuulHvIQ+6YzpA7\nZrQ4NvOrbHdZm9k7tMy98GIMGtUP6FNqOw05IEvqSnh+eWfC88tfEsJx3gbcUiTyV1byPc/snHMu\nQ6U89rTDgT9khwN/2OLYWyO/4aAeEwtVmUYI5pXeVNCVEOeiVC8DW5ZRvvEGZEmrA88TMi6dCrxO\n2F2wIWHH3IeELFHpeovEbE7OOec6gMpDZxauY2bfSRpByND3IIBClqFehDS9pfopYSm7ZI24qesa\n4Fugh5ndY2Zvm9lEM3vIzHYzs4cB4nNiR0t6QNJMwowaSRtIelTSDEkfSxokablc4wr+Iul9SbMk\njZK0d6HOSFpc0hBJ/5H0gxp/duecW2jkInWV+yrhOeSLgaMkHSJpXcLW9yWAmwEknS/pllxhScdL\n+rWkNSWtL+lSYFtCmuCSNdSALGlZ4FfAlWZWSu6vMwnPxWwA3ChpacLOuhHAJkBvQurFuxJ1/gr8\nljDb/jFwCXCrpF/k6c8yhJ15Bmzv95Sdc67+mdldwJ+AswnpdX8C9Dazz2KRbsDKiSpdCM8tvwY8\nRViR7WVmT5Vz3UZbsl6LsPU8eXMdSZ8RciRDGKz/En++zcyS33JOA0aa2emJY0cCH0haC/iAkLS4\nl5nlHn6cGAfj3wP/SVx2ReBfwNvAQb4c7pxz2cpF3qqkXlvM7Grg6gLnDku9/xshNW9VGm1ALuRn\nhNWA2wlb0nNGpMptBGwnaUbquAFrEr4FLQE8Ee8p5CxKy4gAAp4AXgIOiM+wlWAwsHjq2KZ4Qinn\nXH0bS9iuk1TKImV1Ko/UVZ+Lw402II8nDJ4tnhUzs4kAktK7q79OvV+KcBP/FMKgmjSVsAwBYff2\nlNT5dFiah4G9gfVp/Te1gH2AVUor6pxzdWND5v/vMWcqcF1Nr1p5cgkfkGvOzD6X9ARwjKQrKni8\naSSwFzDJzFo9qCbpTcLAu6qZPVusK4Qd3l8DwyX90swyiBHonHMupxa7rNtTfX5NqM4fCV80XpW0\nn6R1JXWX9FtgXYoH8r2KEIT5TkmbSlpDUm9JN0qSmc0ELgQuibvv1pC0saRjJB2caEcAZnYy4dnn\nf0sqFOHFOedcBWq4y7pdNNQMGcDM3pe0MWE39HmEwCBzgDcJN91zN+lb3dc1s6mStgQGAo8R7jdP\nAobm7gOb2emSPiXMgNcgBB0ZGa81r6lEmydK6sz8mfL4LD+vc865xtBwAzKAmX0CHB9fhcrk/Ypk\nZu8RbuYWa/8K4IoC556Gll+/zKxoX5xzzpXP7yE755xzdaC5wseefMnaOeecy1BThfmQfYbsSrAv\nIUBYpcoJs1rM/2TQRhb5O9bOoI2sErVXH9fleP636jbOsS+qbuN0/bDtQiVZL6N2qvVURu2slUEb\nZeUSKOBXGbRxbgZtAKyWUTu10RQ3dVVSrx7V59cE55xzbiHjM2TnnHMdUqPdQ/YZcgliZqhfZ13W\nOedc5XK7rMt/1efQt9DPkCXdBCxtZnsVKdYNqP7mnXPOucw0WqSuhX5ALkbSomb2nZl92t59cc45\n11JzhZu6fMm6A5D0pKQrJF0SUzYOjcfnLUNLWlTSlZKmSPpG0gRJf0419SNJ90r6WtI7knZb0J/F\nOecaXaMtWddnr9rXIYRQmz2Bo/OcPx7YlRDNqztwEDAxVeYM4E5C+pNHgdskLVOj/jrnnGsAvmTd\n2rtmdmqR8yvHMs/H95PzlLnJzO4CkPRX4DhgM+DxTHvqnHMLsUbbZe0Dcmsj2jh/M/CEpLcJS9oP\nm9kTqTJjcz+Y2SxJ04EV2r50P2Dp1LED48s55+rVi8BLqWOzan7V5gpjWTfX6eKwD8itfV3spJmN\nkrQasBOwPXCXpGFmtm+iWDo8lFHS7YFLqC5Sl3POtYfN4ytpInBWTa86t8Jd1pXUWRB8QK5AzIt8\nN3C3pHuAoZKWMbMv27lrzjm30Gi0XdY+IJdJUj9gKjCKMPPdD5jqg7Fzzi1Ynn6xMVkZ52cApxAi\n0TcBrwA7t9FWW+0755xbyC30A7KZHZb4edsCZTonfr4euL5Ie62+rpnZslV20znnXIrvsnbOOefq\ngOdDds455+pAo+VD9gHZOedch+RL1q6GngY+rKL+jIz6kUU7EzNoY1IGbeyZQRsAIzNo4wdVt3C6\nqu+FvdO/+kYAdd8yg1Y+yaCN7TNoA+D/ZdDGNRm0MTGDNvpk0AYU2S5TgqkZ9aGwWgYGkdQX+BMh\n298Y4Fgze6WEelsCTwFjzayswBL1uZDunHPOtRNJ+wMXAWcCGxMG5MckLd9GvaWBW4BhlVzXB2Tn\nnHMdUg2zPfUDrjWzQWY2jpBoaBZweBv1/g7cRoglWjYfkBMk3STp3sT7JyVd3J59cs45l19TDJ1Z\n7qvYMrekRYEewPDcMTMzwqx3iyL1DgNWp4p4oQ1zD1nSTcDSZraXpCeBUWZ2YpXN7knruNTOOefq\nQI1CZy4PdKb1BodPgHXyVZC0NnAesJWZNUuVbfZomAG5FjwcpnPO1a9SQme+c8co3rljdItjc76a\nnVkfJHUiLFOfaWbv5Q5X0lbDDchxprwNsLWkEwhhK1cnbF++DtiOsGvuA+BqM7u8SFstZtqSfgsc\nT/iW9DXwb+AEM/ssnt8GeJKw7XMg8GNgNHComb2b/ad1zjlXTPcDN6b7gRu3OPbpyA/5V4+C/+uf\nRgiL3DV1vCvwcZ7y3wc2BX4q6ap4rBMgSd8CO5jZU6X0tRHvIR8HvAD8g/ALXBGYTPisk4G9gfUI\n6/znStqnjLYXAfoDPwF2B1YFbspT7n8JmwJ6AHOBGyv5IM455wprLnszV3gVW7I2s++AEUCv3DGF\nNehewPN5qkwHNgB+CmwUX38HxsWf04miC2q4GbKZzYjfSmblZq7RXFrebJ8kqSchW9PgEtu+OfF2\nYpyBvyRpCTPLZeM24K9m9iyApP8DHpbUxcy+rexTOeecS6th6MyLgZsljQBeJkywlgBuBpB0PrCS\nmfWJG77eTFaW9Ckw28zeKqdfDTcgFxMf9D4MWAVYHOhCSKNYav0ehOfSNgJ+yPwVhlUI34ZyxiZ+\nzj0dvwJtRv24gfBnnrR1fDnnXL0aC7yeOpbdfdpCmlikwtCZxeuY2V3xmeOzCSuto4HeiUleN2Dl\nsi/choVmQJZ0APA3wjedF5mfRnGzEusvAQwFhgC/AT4jLFkPJQzsScmd2bnUiyXcHjgCWLOU7jjn\nXB3ZML6SphK27dROLSN1mdnVwNUFzh2W73ji/FlU8PhTow7I30KrP6WewHNmdm3ugKRyRr91gWWB\nv5jZR7F+SYO5c8657JWyy7pQvXpUn72q3kTg55JWlbRcvCH/LrCppB0krS3pbOBnZbT5AWGgP07S\n6pJ+TdjglZZvu3sGEYidc841skYdkC8kbFt/E/iUsNZ/LXAvcCdhyXpZ4KpCDUQ27wezacChwD7A\nG4Tl7pOK1WnjmHPOuSrUYpd1e2qYJevkmn585jdfKpoj4ivptHxtxPfbpd7/C/hXqn7nxPmnSS2V\nm9mY9DHnnHPVq+Eu63bRMAOyc865hUtThaEzK7nvvCD4gOycc65Dyi1ZV1KvHvmAXFfWpfWjA+UY\n23aRknyUUTvVyiKvx30ZtJGV6e3dAQDUPV9wufK9yLZVt7F53kB35ZqYQRuQzb+fZTNoI4t/f7dl\n0AaEcA2VWiyjPhTmu6ydc845lzmfITvnnOuQcvmQK6lXj3xAds451yHVKB9yu2nXATmmSlzazPZq\nz34455zreBrtHrLPkJ1zznVIjbbLum6+JkjqLek/kr6QNE3SQ5LWSJxfVVKzpP0lPSfpG0ljJW2d\nKNNJ0vWS3pc0S9I4ScelrnOTpPsknSRpSrzWlZI6J8p0kXShpA8lzZT0gqRtEudXkfSgpM/j+bGS\ndkyc30DSo5JmSPpY0iBJy9Xut+ecc66jq5sBGVgSuAjYBNiOEPoy3zMrFxCyNv0UeAF4UNIP47lO\nwGRgb2A9QraNcyXtk2pjW2AN4JfAIYSQmIcmzl8F/JyQK3lD4G5gSCIZxdWEDE9bERJT/xmYCSBp\naWA4IcH1JkBvQurFdIQv55xzVchF6ir35UvWbTCze5PvJR0JfCrpx2aWTP58hZndH8v8AdiREA7z\nQjObS8uUV5Mk9SQMrIMTxz8HjomJpd+R9AjQC7hB0iqEwXllM/s4lr9Y0k6EXMr9CbGxByf6NTHR\n9jHASDM7PfVZPpC0lpmNL+sX45xzLi+P1FUjktYmDKY/B5YnzHYNWIWQJCLnxdwPZtYk6VXCbDjX\nTl/CwLkK4an2LsCo1OXeiINxzlTCTJf4386EgTqZpakLMC3+fDlwjaTewDDgHjPLRRXYCNhO0ozU\nNY2Q7LjIgHwW8P3Usd2BPQpXcc65djcaGJM6NrvmV220e8h1MyADDwETgCOBKYQB+Q3CQFgSSQcQ\nlrP7EQbuGYSsTOm8xekQUMb85fulgLmE5ebmVLmZAGZ2g6ShwC7ADsBfJJ1oZlfF+g/G66bTLk4t\n/gnOpLpIXc451x5+Gl9JHwFX1PSqzRXusm72JevCJC0LdAeOMLPn4rGtChTfHHg2lukM9CDMWAF6\nAs+Z2bWJttds1UJxowgz5K65vuRjZh8B1wHXSToPOIpw73kksBcwyczSA7pzzrmMNFU4Q67XJet6\n+ZrwBfBf4HeS1pS0HWGDV748wn0l7SFpHcLmqmVgXkDcd4FNJe0gaW1JZwM/K6cjMXXj7cAgSXtK\nWk3SZpJOjfeRkXRJvMZqkjYhbBLLLatfRQhoe6ekTSWtEXeQ35haAnfOOefmae8BuRMwN97PPYAw\n2x1LGIz/VKDOqfE1mjAj3s3MPo/nrgXuBe4kLFkvSxggy3UoMAi4EBgX29wU+CCe7wxcSRiEH41l\n+gKY2VRCLuZOwGPAa8DFwBep+9bOOeeq4Luss7UCYVaLmQ1n/saqnPS6ggFvmdnm+Rozs28JO66P\nSJ06LVHmsDz1+qXeNxF2WJ2VLhvPH5fveOL8e0D6USvnnHMZ8l3WGZC0DOEZ3m0Iy84lV61Nj5xz\nznU0vss6GzcSloAvNLOHyqjnS77OOecA32WdiUqSSZjZJFovYTeY+4GXKq/+0wHZdGN0Ru3UhfQT\nbg4+yaSVzTmz6jbep9UdpLKtwXVVtxF8lFE79eCbjNrpU0Xd16n1Y09z6UTnCoaFuXU6INdnr5xz\nzrmFTHtv6nLOOecq0swiFeZDrs+hrz575ZxzzrWh0e4h12ev2hBTKKaTUewTUzL2K1TPOedc42iK\nA3L5r7aHPkl9JU2I48qLkgoGmZK0paRnYzrfWZLeknRCuZ+nIWbIMZvSFcDvzWxQhW10js8fO+ec\n6wCamzvT1FzBDLmNOpL2JwSo+h3wMiE/wmOSupvZtDxVviaMQa/Fn7cihFWeaWbXl9qvDjlDTpJ0\nCnAZsH9uMJbURdLlkj6J327+I2nTRJ1tJDVL2lHSq5JmE6JrIWl3SSNivfGSzogxs3N1+0l6TdJM\nSR9IukrSkonzfSR9EUNrvilphqQhkrousF+Kc84tBJqaOjF3bueyX01NbQ59/YBrzWyQmY0DjgZm\nAYfnK2xmo83sX2b2lpl9YGa3EyI1/qKcz9OhB2RJ/0eIwrWLmT2YOPU3YE/gYGBjQsrDx2JAkqTz\ngT8T0je+JukXwC3AJcC6wO8J+/7/mqjTBBwL/Bg4hBDHemCq3SWAk4CDCH8gqxDCcDrnnKtjkhYl\nhHEenjsWwx4PA7YosY2NY9mnyrl2R16y3pmQLLiXmT2VOyhpCcK3mUPM7PF47CjgV4SQmhcl2jg9\nhuzM1T0DON/M/hkPTYrHLgDOATCzyxP1P5B0OnANcEzi+CKE5fOJsd0rgdOr/cDOOefma5rbGeZW\nEDpzbtEl6+UJMS/SD+x/AqxTrKKkycCPYv0BZnZTsfJpHXlAHkP4xZ0taScz+zoeX5PwuZ7PFTSz\nuZJeJsyE5x0GRqTa3AjoKal/4lhnoIuk75nZbEnbE5JbrAv8IF5rsdz5WGdWbjCOphLidrdhKPC9\n1LEN8BzJzrn69iAhpX3SjJpftbmpMxQfXJk7+B6aBt/T8uBX02vVpa2ApQhpggdKGm9m/yq1ckce\nkD8iJHB4ChgqacfEoFyqdPmlgDMI2Z1aiIPxqoS/dVcRlrE/JyxJXw90AXIDcjo8lFFSHO4dgRVL\n7rxzztWHX8dX0ut5jmWrqakT1saArD32Y5E99mtxrHnMaJq326ZQlWmEW5PpfT9dgY+LXStGlAR4\nQ1I3YABQ8oDcoe8hm9lkQoKKboR7xEsC7xEGxC1z5SQtQsiL/EYbTY4E1jGz99OveL4HIDP7k5m9\nbGbjgf/J+GM555wrQdPczsz9rvxXsSVrM/uOsHraK3cs5rLvRWLltQSdgcXK+TwdeYYMgJl9KGkb\nwkz5MWAnwj3dv0n6ApgMnAIsTkhqkZNvxno28FC8DzAYaCYsY29gZqcTNoctKuk4wkx5K8LGL+ec\nc43jYuBmSSOY/9jTEsDNAJLOB1Yysz7x/R+BD4Bxsf42hI29l5Zz0Q4/IAOY2ZQ4KD9JuBHbmzDg\nDgK+D7wK7GBmXyWr5WnncUm7EpatTyHMtMcRlqQxs9cknRjPnQc8Q7ifXNGzz8455ypnzZ2xpgqG\nsTaeQzazuyQtT5ikdQVGA73N7LNYpBuwcqJKJ8JTO6sBcwkrtSebWVmZTzrkgGxmrVLEmNlUwkar\nnBPiK1/9pymQOcrMngCeKHLtywjPPSfdljh/C+HRqWSdBwpdzznnXIXmdmpzU1fBem0ws6uBqwuc\nOyz1/krgyvI70lKHHJCdc845SthlXbBeHfIB2TnnXMfUJJhbwgMs+erVIR+Q68qytN5pX4bRN2fU\nj90yaGNYBm1kkWQ9q4il6RgBHVlWyeurf8BgjRZxeipzGb+rug2A4zkzg1YWzaCNZTNoI6u/r7e0\nXaSgqRn1oYgmwh3bSurVoQ792JNzzjnXKHyG7JxzrmPyGXLjizkwj0u8b5ZUUsiZcso655yrwtwq\nXnWoIQdkSTfFgbFJ0hxJ70o6XVKln7cbMCTLPjrnnKvSXEK0iHJfdTogN/KS9RDgUEK2hp0Iz5PN\nIWRuKouZfZppz5xzzlWvmcqWn5uz7kg2GnKGHM0xs8/MbHKMljKMkK4RSXtLel3S7Lg8fWKxhpLL\n0JIWlXSlpCmSvon1/5yq8iNJ90r6WtI7krLYtuyccy4pdw+53JffQ253swlpFDchZN+4nZDb8Ezg\nHEmHlNjO8cCuhExT3YGDgImpMmcAdxLyJj4K3CZpmWo/gHPOucbVyEvW88Qcxr2By4ETgWFmdl48\nPV7S+sDJlBaTemXgXTPLZf2YnKfMTWZ2V7z2X4HjgM2Axyv/FM4551qodIOW30Ne4HaTNIPwpL4I\n8aYHAM8C96fKPgccL0lm1irpRMrNwBOS3iYksng4xr9OGpv7wcxmSZoOrNB2lwcTklIlbUrIHOmc\nc/VqLCH/cdLsfAWz1WCPPTXygPxv4GjCnropZtYMENJaVs7MRklajbBRbHvgLknDzGzfRLHv0tUo\n6fbAPsAqVfXPOecWvA3jK2kqUFayo/L5gNxhfG1mE/IcfwvYMnVsK+CdEmbHAJjZTOBu4G5JFMSx\n+gAAG2VJREFU9wBDJS1jZl9W1WPnnHOl8wG5w7sIeFlSf8Lmrp5AX8Jsuk2S+hG++o0izHz3A6b6\nYOyccwuYD8gdW1xy3o+QeLo/YXDtb2a3JoulqyV+ngGcAqxF+GN9Bdi5SN1Cx5xzzrl5GnJATieP\nznP+PuC+IufXSL3vnPj5euD6InVbJdo0syzStzjnnEvKReqqpF4dasgB2Tnn3EKgicqWn33J2jnn\nnMuQ30N2zjnn6oAPyK5mOu8L2qTy+nMHZNSRTzJo4wcZtPFNBm1kdfs+i9/JzzNo46UM2vhlBm1A\nNn2p/s/4eM7MoB9gp5xVdRu6IIu+ZPF3LZvfCVT/O3Gl8wHZOedcx+QzZOecc64ONFgs66qyPUm6\nKaYmbJI0R9K7kk6XVHG7klaNbf6kmr4555xrcA2WfjGLGfIQ4FDge4T4zlcDc4ALym1IUi4RhAfS\ncM45V1yDLVlnkQ95jpl9ZmaTzew6YBiwO4CkvSW9Lmm2pAmSTkxWjMf6S7pF0peESOTvx9Oj40z5\n37Hsk5IuTtW/T9KNiffdJD0iaZak8ZL2i9c4Lp5vNfuWtHQ8tnXi2AaSHpU0Q9LHkgZJWi5xfh9J\nr8XrTJP0uKTFE+ePlPSmpG/if/9Q9W/ZOedcS7nAIOW+GnHJuoDZQBdJmxBiRd8ObEDY9neOpENS\n5U8CRgMbE8JZbkaYJW8HdAP2KuPat8Y6WxNSJ/0B+FGqTNHZt6SlgeHACGATQh7lFYBcfuNu8TNd\nD6wLbAPcG/uMpIMIaR7/Es//FThb0sFlfA7nnHPtSFLfOKH7RtKLkgrmwZW0Z5yYfSrpK0nPS9qh\n3GtmuqlL0vaEAexy4ERgmJmdF0+Pl7Q+cDIwKFFtuJldkmijOf74uZl9Wsa11wV6AT3MbFQ8diTw\nbrpoG00dA4w0s9MTbR8JfCBpLeD7QGfgPjObHIu8kag/ADjJzB6I7yfFz3004QuDc865LNQoUpek\n/QmJiH4HvAz0Ax6T1N3MpuWpsjXwOGEi9iVwOPCQpM3MbEyp3cpiQN5N0gwgd//3NsKg9Cxwf6rs\nc8DxkpRIdTgigz4AdAe+yw3GAGb2nqQvymxnI2C7+JmSDFgTeIKQa/l1SY8R/hAGm9mXkpaIZW6Q\nlIx33Znwh+Sccy4rtbuH3A+41swGAUg6GtiFMNC22h9lZv1Sh06TtDuwG7BAB+R/E2Z/3wFTzKwZ\nQGprIjrP1yWWa6b17HbRUi+SaINUO+k2lgIeJGR0Sl9vavx8v5K0BbADcCxwrqTNmB/l4EjCt6qk\ntv8KNPUDLd3ymA6ETge2WdU559rPWOD11LHZtb9sDQbkuLm4B5Bb3cXMTNIwYItSmlcYAL8PfF5O\nt7IYkL82swl5jr8FbJk6thXwTmJ2nM+38b/prEmfASvm3sRHqzYgfCEAeBtYRNLGiSXrtYAfptog\ntpP71rIxLe8rjyTct56U+3KRj5m9ALwg6RxgErCnmV0qaQqwppndWeQz5tf5kuoidTnnXLvYML6S\nphL26dZQbWbIyxPGn3TItE+AdUq8wsnAksS9R6WqZWCQi4CXJfUnbO7qCfQlzKaL+ZQw09xR0kfA\nbDObThh4L5K0M/Ae4R71MrlKZva2pOHAP+Ku5rnAhcAs4oBrZrMlvQicKmki0BU4J3X9qwgz3Dsl\nXUD4hrM2sD9wBPAzwr3qx2NfNyf8Ab4Z658JXCZpOjAUWAzYFFjGzC4t4ffmnHOuFKWkX3zrDhh3\nR8tjc76qVY+Q9BvgdODXBe43F1SzAdnMRknaj7Bzuj/h61J/M0tubGo1UzazJknHAmfEuv8h7Li+\nEfgJcAvhj+ES5s+Ocw4GbgCeBj4m7HBen5ZrJ4cTdki/SphVn0IYXHPXnyppS2Ag8BhhQJ0EDI3L\nFtMJN/CPJwRsngScaGaPx/o3SPo6tnsBYUl+LOCDsXPOLWjrHRheSZ+MhFt7FKoxjTCH7po63pUw\nrhQk6QDCssA+ZvZkuV2takA2s8PaOH8fcF+R82sUOH4jYQBOHptL2AF9TJH2PgF2zb2X9P8IjyyN\nT5QZR1g6T2qxPG5m7xEem8p3jXGEACgFxeXq8pesnXPOla4Gu6zN7DtJIwgroQ/CvHvCvQhPEOUl\n6UDCZG9/MxtaQa8aK5a1pG0Jm7LGAisRZqjvA8+0Z7+cc87VQO12WV8M3BwH5txjT0sANwNIOh9Y\nycz6xPe/ieeOA16RlJtdfxNvuZakoQZkwo7p84DVgRmEx6wONLM6DZTmnHOuYjUakM3sLknLE26b\ndiUEr+ptZrmNwd2AlRNVjiKstF4VXzm3EG6TlqShBuR4Hze91c8551wjKmVTV6F6bTCzqwm5GfKd\nOyz1ftsKetFKQw3IHV7T47QOLNYe1sqgjfFtF+lQls2gjSz+bH+QQRuvZdAGwP9k0MakDNo4LYM2\nQBdU/7u1M06qvh9nP9B2oTad13aRkpQb6iFpAQwvNYrU1V5qEcvaOeecc2XyGbJzzrmOydMvLjzy\npWt0zjlXJ3IDcrkvH5ArI+mmOCg2SfpW0vuSBkpabAFc/gPCbrp0kFbnnHPtrcHyIXeUJeshwKFA\nF0LQ70GERBF/qeVFY8ztklNAOuecW4CaqWy2WzBLQfuq+xlyNMfMPjOzj8zsQUIKxF8BSPplnEHP\n2yIpaaN4bJX4fhVJD0r6XNJMSWMl7RjPLSPptphYepaktyXlHvZusWQtqZOk6+MsfZakcZKOS3Y0\nzujvk3SSpCmSpkm6UlI6WYZzzjk3T0eZIc8jaQNCFqmJ8ZCRJyZ26tjVhM+6FSHZxI+BmfHc/wLr\nAr2B/xKe+Vm8QDudgMnA3oSkEz2B6yRNMbPBiXLbAlOAX8b27gJGEeJsO+ecy0LunnAl9epQRxmQ\nd5M0g9DfxQiLFH8so/7KwGAzy2Vkmpg6NyqXspFw3zhpXk7kGE/7rMS5SZJ6AvsByQH5c+CYuOT9\njqRHCHFQfUB2zrmsNNgu644yIP+bkLZxKUJM0blmdn8Z9S8HrpHUGxgG3GNmY+O5a4B7JPUgZH26\nP+Y6zktSX+AwYBXCTLoLYfab9EYq5/NUQu7mNgwihEtN6knrtNLOOVdPxhBSCCTNzlcwWzWM1NUe\nOsqA/LWZTQCQdAQwRtJhZnYT82/PK1G+RXiZmBJxKLALsAMhH/JJZnaVmQ2N95p3JtyXHi7pSjM7\nJd2JmFrrb4QvBS8S4mWfAmyWKpr+K2KUdL/+EEIYbuec60g2iq+kKRSIPJkd39TVvuLM8zzg3Pjo\n02eEwXjFRLGN89T7yMyuM7N9CJk8jkqc+6+Z3WpmhwAnAL8rcPmewHNmdq2ZjTGz94E1M/lgzjnn\nyuPPIdeFuwm/0r6EoMmTgQGS1pK0C3BisrCkSyTtIGk1SZsQNl29Gc+dJenXktaUtD4hn/Kb5Pcu\nsGlsa21JZwM/q8kndM45t1DpkANyTKd4JWG5eFHgQMJO6THAybSONt85ln8TeBQYRxjMAb4lzLjH\nAE8Rvj8dmLxc4udrgXuBOwlL1svSMtWWc865BaWS2XGlO7MXgLq/h5xOc5U4PhAYGN8+D/w0VaRz\nouxxFGBm5wLnFjg3KdXOt8AR8ZV0WqJMq/6aWb9C13fOOVch39TlnHPO1YEG29TlA7JzzrmOyZ9D\ndvVrrYzaGZdBG9/PoI0skmxVsp6VTxbPgr+VQRsfZdBGVv/sx2fQxqJtF2nTgxm0ATC96hZ09mVV\nt2H77l59P+4+s+o2qrcA1oUbLFJXh9zU5ZxzzjUanyE755zrmBpsU5fPkEskaUI6s1MWZZ1zzlUo\nt6mr3Fedbuqq6wFZ0vKSrpE0SdJsSVMlDZG0RUbttxo4JfWR9EWe4psC12VxXeeccxlosEhd9b5k\nfS+hjwcDE4CuhKxJy9XwmiJPOkcz+28Nr+mcc65cDbbLum5nyJKWJuQv/rOZPWNmk83sVTMbaGYP\n58pIulbSx5K+kfSapJ0Tbewt6fU4u54g6cTEuSeBVYFLJDVLapK0DXAjsHTi2BmxfIvZtKQBiZn7\nh5IuTX2EJSXdIGl6LHcUzjnnspO7h1zuy+8hl21mfO0hqUv6pCQBQ4EtgN8A6xHCZjbF8z2AfwG3\nE1IfngmcI+mQ2MRewIfA6UA3QnKK5wjJJaYTZuMrAhfmufY+sdxRhGeN9qB17rETgVcIEcSuJqR/\nXLv8X4NzzrmFQd0uWZtZk6Q+wD+AP0gaCTwN3BlzGf+KcF93XTN7L1abmGiiHzDMzM6L78fH5BEn\nA4PM7AtJTcBMM/s0V0nSV+Hy9lmR7q1MyHE8PMbV/hB4NVXmETP7e/x5oKR+hKQW75bxa3DOOVdI\nEy0T75ZTrw7V7YAMYGb3SXoE+AWwObATcHJc/l0B+DAxGKetB9yfOvYccLwkxTSOlbqbMEOeEPMs\nPwo8FAfnnPSM+ePY5yIGAUukjvUkm6AUzjlXK2OB11PHZtf+spUOrD4gVyYmdBgeX+dK+gdwFnmW\nkhdgnz6U1B3YnjBTv4rwRWHrxKCcfjrOaPMWwSHA6tl21jnnam7D+EqaSs0fTGkizxbcEpTw2JOk\nvsCfCLc0xwDHmtkrBcp2Ay4irNquBVxmZifmK1tMPd9DLuQtwjRyDLCypELxIt+i9dRyK+CdxOz4\nWxLZnIoca8XM5pjZI2Z2AmEpegta/410zjlXKzXa1CVpf8IAeyawMWG8eUzS8gWqLAZ8CpwDjK70\n49TtgCxpWUnDJR0kaUNJq0nal3AP+H4z+w/wDHCPpO3j+R0l9Y5NXAT0ktRf0trxfnRf4G+Jy0wE\ntpa0kqTlEseWkrSdpOUkLZ6nb30kHS5pfUmrEx7LmgVMqsGvwjnn3ILVD7jWzAaZ2TjgaML/4w/P\nV9jMJplZPzP7J1UERa/bAZmww/pFwr3apwk3Kc4CrgWOjWX2Iuxkvh14g5AfuROAmY0C9gP2j3UH\nAP3N7NbENc4AVgPeI3y7wcxeAP5O2KH9KeELALRcGPmSsMP6WcI3p+2AXc3sizxlKXLMOedcpSqJ\n0pV7FSBpUaAH4TYpEHb5AsMIK6E1U7f3kOO949Piq1CZL4Eji5y/D7ivyPmXCMsR6eN9CbPp5LE1\nEj8/ADxQpN018hzbpFB555xzFcp+qrM84bblJ6njnwDrZH61hLodkJ1zzrnq3RFfSV+1R0fa5AOy\nc865BnZgfCWNJKxK5zWNsKjdNXW8K+Hx1ZrxAbmurEi4pV2pp7LpBntm0MZDGbTxVgZtrJpBGwAv\nZ9DGshm08U31Tezz5+rbABg8IoNGns6gjYxsMKD6Nl4/t+omdPdlVbexgWVzq/N1PV5F7Y45vJjZ\nd5JGEPImPAjzIkP2Ai6v5bU75m/MOeecq52LgZvjwPwyYdf1EsDNAJLOB1Yysz65CpI2IsQNWwr4\nUXz/rZmVPLPwAdk551wHlXsQuZJ6hZnZXfGZ47MJS9Wjgd6JkMrdCCGUk0Yxf4vZJoQcC5OAVpt8\nC/EBuQQxM9SoUiKvlFPWOedcNXIJjiupV5yZXU1IDJTv3GF5jlX9GHFdD8jxG8o5wM6EbylfEL6p\nnB2fF15Q9qSyr2HOOedqpjYz5PZS1wMycC+hjwcDEwiDci9guWKVshafd3bOOVdXmqhscK3P7BJ1\nG6lL0tKE2NN/NrNnzGyymb1qZgPN7OFYplnS0ZIelTRL0nuS9k6183+S3pb0dTx/tqTOifNnShol\n6beSJkj6UtIdkpZMlHlS0sWJ93+U9I6kbyR9LOmuVPc7SRoo6b+Spko6sya/JOecW6jVKJh1O6nb\nAZkQOnMmsIekLkXKnU1Ih/gT4DbgTknJaCrTCWmU1gOOI0T26pdqY01gd8LS+C7ANsCp+S4maVPg\nMqA/0B3oTYipndQn9n0z4BTgDEm9inwG55xzC7m6HZBjGsM+8fWlpGclnSspnVHpLjO7yczGm9kZ\nwKvMj3WNmZ1nZi+Z2Qdm9ggh6cR+qTYE9DGzt8zsOeBWwtJ4PisTBttH4qx9jJldmSrzmpmdY2bv\nxdjZrxZpzznnXEUaa4Zc1/eQzew+SY8AvwA2B3YCTpF0hJkNisVeTFV7Adgo9yam0TqWMAteivCZ\n03HTJprZrMT7qcAKBbr1BGEr+wRJQ4GhwH1mlozY8FqqTrH2Ei6NXUzaIb6cc65ejSHk8EmavQCu\n21j3kOt6QIZ5SSaGx9e5kv5ByPo0qGhFQNIWwD+B04HHCQPxgUD6kaT0Nj2jwOqBmc2UtAnwS8JI\neRYwQNKmZpZLu1Vyey2dAKzbdjHnnKsrG5GYB0VTKPDUUIYaa5d13S5ZF/EWsGTi/eap85szP+bi\nFoTZ7/+Z2Ugze4/qYlMCYGbNZvZvMzuV8LdwNUIKRueccwtMboZc7stnyGWRtCxhs9aNhCXgGcDP\nCPmJ708U3TeGN3sW+G0sk3to+11glbhs/QqwK7BHlf3ahRB55RnCc9G7EO5Bj6umXeecc+VqrBly\n3Q7IhI1TLxLWcdcEFgUmA9cC5yfKnQkcAFxFuFd7gJm9DWBmD0m6BLgCWAx4hLAre0CZfUlm3PwS\n2Cte93uEQf8AMxuXp6xzzjlXkrodkOO949Piq5gpZta7SDun0voRpssT588i3AdO1rmM8GhT7v12\niZ+fA7Ytcr1WS9dmlkX6JOeccy3ULnRme6jbAdk555wrzpes64kvDzvn3ELLH3uqG2bWue1Szjnn\nGpPPkF3NPE/IoVGh5Qdk041pGbVTtW/aLtKmdLCC9vRJe3cgGDygvXuQ8IcM2rgmgzaA10dm007V\nPq+6hdf1SAb9gFtbbq8py0RCAAhXOh+QnXPOdVCNtWSdaWAQSdtIapL0gyzbdc4551prrFjWJQ/I\nkh6UNKTAuV9Iagb+C6yYCCFZSrsTJB1XannnnHMuWHgjdd0ADJa0kplNSZ07DHjFzF7PrmvOOedc\nMY21qaucJeuHgWnAocmDkpYE9gGuj0vWzckla0lbSXpG0ixJkyRdJmnxeO5JYFXgklivKR4/VNIX\nknaQ9KakGZKGSOqaaHdTSY9L+kzSl5KekrRxqm/Nkn4n6SFJX8e2Npe0pqQnJc2U9Jyk1VP1dpc0\nQtI3ksZLOkNS58T5AfGzzJb0oaRLE+e6SLowHp8p6QVJ25Txe3bOOVeShXTJOuYnHkRqQCbkFu4E\n3JkrmjshaU1gCCEm9QbA/sCWQC5/8F7Ah4TNeN2AFRNtLAGcBBxESL+4CnBh4rrfB24GegI/B94B\nHo1fEJL6x3IbEZJO3A78HTgX6EGIQz0vn7GkXwC3AJcQUi/9npCT+a/x/D6EcJ5HAWsRYmMnt/Je\nFfuzH7Bh/OxD4u/COeecy6vcTV03AmtJ2jpx7FBgsJnNyFP+VOCfZnaFmb1vZrnY1H0kdTGzLwiL\n+TPN7FMz+zRRdxHg92Y2ysxGEwbNXrmTZvakmd1uZu/G2NVHEwbx9Gz0RjO7x8zGAxcQMjP908yG\nxXqXEVIp5pwBnG9m/zSzSWY2PB47Op5fmRAze7iZfWhmr5rZDQCSVo6/j33N7Hkzm2BmFwPPMT/h\nhXPOuUxUcv+40nCbtVfWY09m9rak54HDgWckrUWYvfYvUGUjYENJv00cU/zv6sDbRS43y8wmJt5P\nBVaY14i0AmGWu0083hlYnDCTTkrOXnMPgr6eOvY9SUuZ2czY556Skp+pM9BF0vcIM94TgAmShgKP\nAg/FFYQNY9l3JClRvwthub8NQwn5KpI2iM0651x9eiG+kmYtkCs31j3kSp5DvgG4XFJfwqxvvJn9\np0DZpQjZmS5j/kCc80Eb10n/li3VxiDgh8Cxsa05hOxQXYq0Y0WO5VYLliLMiO9Nd8jMZgMfSuoO\nbA/8ipCB+0/xPvFShD/pTYDmVPWZrT5hKzsyf9XeOec6hi3iK2kiCyIwSGM9h1zJgHwXcCnh3u7B\nhHumhYwEfmxmxcJPfUuYVZarJ/AHM3sM5i0XL19CvbbiX48E1jGz9ws2YDaHkMrxEUlXE3IhbwiM\nInyWrjErlHPOuZpprBly2YFBzOxrwqB8PmEj1i2pIslZ7EDC8u8VkjaStFbcwXxFosxEYGtJK0la\nroyuvAscLGldST8H/klpqyTpmXr62NnAIXFn9Y9j+/tLOgdAUh9Jh0taP+7OPjhed5KZvUvYNDZI\n0p6SVpO0maRTJe1UxmcrIIMwkHPuqL6NTMJR1ksbWbXTSG1k1U4WbdyXQRv18lmyaqc+2kgvUbeP\nxnoOudJIXTcAywBDzezj1Ll5M1AzG0u4x7s28Axh9jkA+ChR/gzCRqv3gOSmrrYcTliyHkH4UnBZ\nnvr5ZsNFj5nZ48CuhOXolwl/704gfHEA+JKww/pZYAywHbBr3KAGYVPXIMKO8HGEpe9NaXuJvgQZ\nPOadyYCcxePm9dJGVu00UhtZtZNFG1kMyPXyWbJqpz7aqI8BuXYk9Y2Bq76R9KKkn7VR/pfxcdnZ\nkt6R1Kfca1YUyzrulm61zGxmT6ePm9kIws3RQm29BGycOnYLqZm3mT2QbNvMxhAeL0q6N1Un3ZdJ\nefqXr89PAE8U6O8DwANFPk8TcFZ8Oeecq5naLFlL2h+4CPgdYWLWD3hMUncza7VBV9JqhFgdVwO/\nIewxul7SlDielCTTWNbOOefcglOzJet+wLVmNsjMxhEee51FWJnN5w/A+2Z2ipm9bWZXAYNjOyXz\nAdk551wHlX2kLkmLEoJGDc8dMzMDhtF6M3nO5vF80mNFyufl6RfrQ3z4uK1HlWcTHscuYG4J+Vyb\nvyqhXJFrlNKPktRLG/XUl3ppY0H25bU2zk8voUxH+ftaT30prY2JRc7NauN8IuFBOrhChj6msh3T\nRf9fuzzhNmY6gfknwDoF6nQrUP4HkhaLT+a0SWHgd+1J0m+A29q7H845VwMHmdntWTYoaRVCKOQl\nqmhmDtDdzFpsuJW0ImHj8RZxj1Pu+EBgazNrNeuV9DYhKuTAxLGdCPeVlyh1QPYZcn14jPBc90TC\nV1fnnOvovkd4guaxrBs2sw8krUdpsScKmZYejHPHCTeZu6aOdyVMyfP5uED56aUOxuADcl0ws/8S\nnl92zrlG8nytGo6DaQaPk7Zq9ztJIwi5Ex4EiKGQewGXF6j2ApCONbEDZT4d5pu6nHPOuZYuBo6S\ndIikdQkZApcgZA5E0vmSko/m/h1YQ9JASetI+iMhLfHF5VzUZ8jOOedcgpndJWl5QuTGrsBooLeZ\nfRaLdCNk/suVnyhpF0La3uMIaYWPMLP0zuuifFOXc845Vwd8ydo555yrAz4gO+ecc3XAB2TnnHOu\nDviA7JxzztUBH5Cdc865OuADsnPOOVcHfEB2zjnn6oAPyM4551wd8AHZOeecqwM+IDvnnHN1wAdk\n55xzrg78fziXG3mmK1+9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1105fd630>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Keep track of correct guesses in a confusion matrix\n",
"confusion = torch.zeros(n_categories, n_categories)\n",
"n_confusion = 10000\n",
"\n",
"# Just return an output given a line\n",
"def evaluate(line_tensor):\n",
" hidden = rnn.init_hidden()\n",
" \n",
" for i in range(line_tensor.size()[0]):\n",
" output, hidden = rnn(line_tensor[i], hidden)\n",
" \n",
" return output\n",
"\n",
"# Go through a bunch of examples and record which are correctly guessed\n",
"for i in range(n_confusion):\n",
" category, line, category_tensor, line_tensor = random_training_pair()\n",
" output = evaluate(line_tensor)\n",
" guess, guess_i = category_from_output(output)\n",
" category_i = all_categories.index(category)\n",
" confusion[category_i][guess_i] += 1\n",
"\n",
"# Normalize by dividing every row by its sum\n",
"for i in range(n_categories):\n",
" confusion[i] = confusion[i] / confusion[i].sum()\n",
"\n",
"# Set up plot\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"cax = ax.matshow(confusion.numpy())\n",
"fig.colorbar(cax)\n",
"\n",
"# Set up axes\n",
"ax.set_xticklabels([''] + all_categories, rotation=90)\n",
"ax.set_yticklabels([''] + all_categories)\n",
"\n",
"# Force label at every tick\n",
"ax.xaxis.set_major_locator(ticker.MultipleLocator(1))\n",
"ax.yaxis.set_major_locator(ticker.MultipleLocator(1))\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can pick out bright spots off the main axis that show which languages it guesses incorrectly, e.g. Chinese for Korean, and Spanish for Italian. It seems to do very well with Greek, and very poorly with English (perhaps because of overlap with other languages)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Running on User Input"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"> Dovesky\n",
"(-0.87) Czech\n",
"(-0.88) Russian\n",
"(-2.44) Polish\n",
"\n",
"> Jackson\n",
"(-0.74) Scottish\n",
"(-2.03) English\n",
"(-2.21) Polish\n",
"\n",
"> Satoshi\n",
"(-0.77) Arabic\n",
"(-1.35) Japanese\n",
"(-1.81) Polish\n"
]
}
],
"source": [
"def predict(input_line, n_predictions=3):\n",
" print('\\n> %s' % input_line)\n",
" output = evaluate(Variable(line_to_tensor(input_line)))\n",
"\n",
" # Get top N categories\n",
" topv, topi = output.data.topk(n_predictions, 1, True)\n",
" predictions = []\n",
"\n",
" for i in range(n_predictions):\n",
" value = topv[0][i]\n",
" category_index = topi[0][i]\n",
" print('(%.2f) %s' % (value, all_categories[category_index]))\n",
" predictions.append([value, all_categories[category_index]])\n",
"\n",
"predict('Dovesky')\n",
"predict('Jackson')\n",
"predict('Satoshi')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The final versions of the scripts [in the Practical PyTorch repo](https://github.com/spro/practical-pytorch/tree/master/char-rnn-classification) split the above code into a few files:\n",
"\n",
"* `data.py` (loads files)\n",
"* `model.py` (defines the RNN)\n",
"* `train.py` (runs training)\n",
"* `predict.py` (runs `predict()` with command line arguments)\n",
"* `server.py` (serve prediction as a JSON API with bottle.py)\n",
"\n",
"Run `train.py` to train and save the network.\n",
"\n",
"Run `predict.py` with a name to view predictions: \n",
"\n",
"```\n",
"$ python predict.py Hazaki\n",
"(-0.42) Japanese\n",
"(-1.39) Polish\n",
"(-3.51) Czech\n",
"```\n",
"\n",
"Run `server.py` and visit http://localhost:5533/Yourname to get JSON output of predictions."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercises\n",
"\n",
"* Try with a different dataset of line -> category, for example:\n",
" * Any word -> language\n",
" * First name -> gender\n",
" * Character name -> writer\n",
" * Page title -> blog or subreddit\n",
"* Get better results with a bigger and/or better shaped network\n",
" * Add more linear layers\n",
" * Try the `nn.LSTM` and `nn.GRU` layers\n",
" * Combine multiple of these RNNs as a higher level network"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Next**: [Generating Shakespeare with a Character-Level RNN](https://github.com/spro/practical-pytorch/blob/master/char-rnn-generation/char-rnn-generation.ipynb)"
]
}
],
"metadata": {
"anaconda-cloud": {},
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python [conda root]",
"language": "python",
"name": "conda-root-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}