-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
307 lines (265 loc) · 14.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import streamlit as st
import pickle
import numpy as np
import os
import joblib
import pandas as pd
from streamlit_option_menu import option_menu
# Loading all the models
working_dir = os.path.dirname(os.path.abspath(__file__))
crop_recom_model = pickle.load(open(f'{working_dir}/RF_Crop.sav', 'rb'))
rainfall_model = pickle.load(open(f'{working_dir}/Rainfall_Ridge.sav', 'rb'))
aqi_model = joblib.load(f'{working_dir}/xgb_best_model.joblib', 'rb')
crop_yield_model =joblib.load(open(f'{working_dir}/voting_yield.sav', 'rb'))
st.set_page_config(
page_title="Krishi Mitr",
page_icon=":corn:",
layout="wide",
initial_sidebar_state="expanded"
)
# Set background color
st.markdown(
"""
<style>
body {
background-color: #f0f5f5;
}
.profile-pic {
border-radius: 50%;
width: 150px;
height: 150px;
object-fit: cover;
margin-bottom: 10px;
}
.profile-column {
text-align: center;
padding: 20px;
}
.icon {
width: 24px;
height: 24px;
margin: 0 5px;
}
.profile-name {
font-size: 18px;
font-weight: bold;
margin-top: 10px;
}
</style>
""",
unsafe_allow_html=True,
)
with st.sidebar:
options = ["Home", "Rainfall Prediction", "Crop Yield Prediction", "Crop Recommendation", "AQI Prediction", "Meet the Creators"]
selected = option_menu("Krishi Mitr",
options,
menu_icon=":seedling:",
icons=["house", "cloud-rain", "tree", "tree", "wind", "people"],
default_index=0)
# Rainfall Prediction
if selected == "Rainfall Prediction":
st.title("Rainfall Prediction")
st.write("Provide the following information to predict rainfall:")
st.write("""
- **Subdivision**: Select your geographical area.
- **Year**: Enter the year for prediction.
- **May Rainfall (mm)**: Rainfall amount in May.
- **June Rainfall (mm)**: Rainfall amount in June.
- **July Rainfall (mm)**: Rainfall amount in July.
- **August Rainfall (mm)**: Rainfall amount in August.
- **September Rainfall (mm)**: Rainfall amount in September.
""")
# Define all subdivisions
subdivisions = [
'ANDAMAN & NICOBAR ISLANDS', 'ARUNACHAL PRADESH', 'ASSAM & MEGHALAYA', 'NAGA MANI MIZO TRIPURA',
'SUB HIMALAYAN WEST BENGAL & SIKKIM', 'GANGETIC WEST BENGAL', 'ORISSA', 'JHARKHAND', 'BIHAR',
'EAST UTTAR PRADESH', 'WEST UTTAR PRADESH', 'UTTARAKHAND', 'HARYANA DELHI & CHANDIGARH', 'PUNJAB',
'HIMACHAL PRADESH', 'JAMMU & KASHMIR', 'WEST RAJASTHAN', 'EAST RAJASTHAN', 'WEST MADHYA PRADESH',
'EAST MADHYA PRADESH', 'GUJARAT REGION', 'SAURASHTRA & KUTCH', 'KONKAN & GOA', 'MADHYA MAHARASHTRA',
'MATATHWADA', 'VIDARBHA', 'CHHATTISGARH', 'COASTAL ANDHRA PRADESH', 'TELANGANA', 'RAYALSEEMA',
'TAMIL NADU', 'COASTAL KARNATAKA', 'NORTH INTERIOR KARNATAKA', 'SOUTH INTERIOR KARNATAKA', 'KERALA',
'LAKSHADWEEP'
]
subdivision = st.selectbox("Subdivision", subdivisions)
year = st.number_input("Year", min_value=1900, max_value=2100, value=2023)
may = st.number_input("May Rainfall (mm)", min_value=0.0, value=0.0)
jun = st.number_input("June Rainfall (mm)", min_value=0.0, value=0.0)
jul = st.number_input("July Rainfall (mm)", min_value=0.0, value=0.0)
aug = st.number_input("August Rainfall (mm)", min_value=0.0, value=0.0)
sep = st.number_input("September Rainfall (mm)", min_value=0.0, value=0.0)
if st.button("Predict Rainfall"):
if subdivision and year:
rainfall_input = {
'SUBDIVISION': [subdivision],
'YEAR': [year],
'MAY': [may],
'JUN': [jun],
'JUL': [jul],
'AUG': [aug],
'SEP': [sep]
}
rainfall_input_df = pd.DataFrame(rainfall_input)
# Predict if all inputs are provided
if all(rainfall_input_df.iloc[0, 2:]):
rainfall_prediction = rainfall_model.predict(rainfall_input_df)
st.success(f"Predicted Rainfall: {rainfall_prediction[0]}")
else:
st.error("Please enter valid values")
else:
st.error("Please enter subdivision and year")
# Crop Recommendation
# Crop Recommendation
elif selected == "Crop Recommendation":
st.title("Crop Recommendation")
st.write("Provide the following information to get crop recommendations:")
st.write("""
- **Nitrogen (N)**: Essential nutrient for plant growth.
- **Phosphorus (P)**: Vital for root development and energy transfer.
- **Potassium (K)**: Important for water regulation and disease resistance.
- **pH Value**: Soil acidity or alkalinity level.
- **Temperature (°C)**: Current temperature.
- **Humidity (%)**: Moisture content in the air.
- **Rainfall (mm)**: Amount of recent rainfall.
""")
N = st.number_input("Nitrogen (N)", min_value=0, value=0)
P = st.number_input("Phosphorus (P)", min_value=0, value=0)
K = st.number_input("Potassium (K)", min_value=0, value=0)
pH = st.number_input("pH Value", min_value=0.0, max_value=14.0, value=0.0)
temperature = st.number_input("Temperature (°C)", min_value=0.0, value=0.0)
humidity = st.number_input("Humidity (%)", min_value=0.0, max_value=100.0, value=0.0)
rainfall = st.number_input("Rainfall (mm)", min_value=0.0, value=0.0)
if st.button("Recommend Crop"):
crop_input = np.array([[N, P, K, pH, temperature, humidity, rainfall]])
if all(crop_input[0][:3]): # Check if N, P, K values are provided
crop_recommendation = crop_recom_model.predict(crop_input)
st.success(f"Recommended Crop: {crop_recommendation[0]}")
else:
st.error("Please enter values for Nitrogen (N), Phosphorus (P), and Potassium (K)")
# AQI Prediction
elif selected == "AQI Prediction":
st.title("AQI Prediction")
st.write("")
st.write("To help predict the Air Quality Index (AQI), please provide the following information:")
st.write("""
- **Average Temperature (°C)**: Average temperature over a period.
- **Maximum Temperature (°C)**: Highest temperature recorded.
- **Minimum Temperature (°C)**: Lowest temperature recorded.
- **Atmospheric Pressure (hPa)**: Pressure at sea level.
- **Relative Humidity (%)**: Average percentage of humidity.
- **Visibility (km)**: Distance at which objects are visible.
- **Average Windspeed (km/h)**: Average wind speed.
- **Maximum Windspeed (km/h)**: Highest wind speed recorded.
""")
feature_1 = st.number_input("Average Temperature (°C)", min_value=0.0, value=0.0)
feature_2 = st.number_input("Maximum Temperature (°C)", min_value=0.0, value=0.0)
feature_3 = st.number_input("Minimum Temperature (°C)", min_value=0.0, value=0.0)
feature_4 = st.number_input("Atmospheric Pressure at sea level (hPa)", min_value=0.0, value=0.0)
feature_5 = st.number_input("Average Relative Humidity (%)", min_value=0.0, value=0.0)
feature_6 = st.number_input("Average Visibility (km)", min_value=0.0, value=0.0)
feature_7 = st.number_input("Average Windspeed (km/h)", min_value=0.0, value=0.0)
feature_8 = st.number_input("Maximum Windspeed (km/h)", min_value=0.0, value=0.0)
if st.button("Predict AQI"):
aqi_input = np.array([[feature_1, feature_2, feature_3, feature_4, feature_5, feature_6, feature_7, feature_8]])
if all(aqi_input[0]): # Check if all input features are provided
aqi_prediction = aqi_model.predict(aqi_input)
st.success(f"Predicted AQI: {aqi_prediction[0]}")
else:
st.error("Please enter values for all AQI features")
# Meet Creators
elif selected == "Meet the Creators":
st.title("Meet the Creators")
st.markdown("<br>", unsafe_allow_html=True) # Adding space between the title and the profiles
creators = [
{
"name": "Kanchan Rai",
"linkedin": "https://www.linkedin.com/in/kanchanraiii/",
"github": "https://github.com/kanchanraiii",
"image": "images/kanchan.jpg"
},
{
"name": "Aaron Thomas",
"linkedin": "https://www.linkedin.com/in/aaron-thomas-53996b255/",
"github": "https://github.com/AayJayTee",
"image": "images/aaron.jpg"
},
{
"name": "Saumyaa Garg",
"linkedin": "https://www.linkedin.com/in/saumyaa-garg-481b9224b/",
"github": "https://github.com/saumyaagarg",
"image": "images/saumyaa.jpg"
}
]
cols = st.columns(3)
for i, creator in enumerate(creators):
with cols[i]:
st.image(creator["image"], width=80, caption=None, use_container_width=True, output_format='auto')
st.markdown(f"<div class='profile-column'><p class='profile-name'>{creator['name']}</p><a href='{creator['linkedin']}'><img src='https://upload.wikimedia.org/wikipedia/commons/8/81/LinkedIn_icon.svg' class='icon'></a> <a href='{creator['github']}'><img src='https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png' class='icon'></a></div>", unsafe_allow_html=True)
# Crop Yield Prediction
elif selected == "Crop Yield Prediction":
st.title("Crop Yield Prediction")
st.write("")
st.markdown("""
### Using the Crop Yield Prediction Model
- **Select State**: Choose the state where the crop is being cultivated.
- **Select Crop**: Pick the specific crop for yield prediction.
- **Select Season**: Choose the appropriate growing season.
- **Input Soil pH**: Enter the soil pH level. [Measure pH at home](https://www.youtube.com/watch?v=mZgxUqoJMcg).
- **Input Rainfall**: Enter the rainfall amount (mm). [Check local rainfall](https://mausam.imd.gov.in/responsive/rainfallinformation.php).
- **Input Temperature**: Enter the average temperature (°C). [Check local temperature](https://www.accuweather.com/).
- **Input Area**: Enter the cultivation area (hectares).
- **Input Production**: Enter the total production (tons).
- **Click Predict**: Get the yield prediction.
### Interpreting Results
- Predicted yield is shown in tons per hectare.
- Use this data for crop management and planning.
-
Leverage machine learning for accurate crop yield predictions to enhance productivity and sustainability.
""")
states = ['Andaman and Nicobar Islands', 'Andhra Pradesh', 'Arunachal Pradesh', 'Assam', 'Bihar', 'Chandigarh', 'Chhattisgarh',
'Dadra and Nagar Haveli', 'Goa', 'Gujarat', 'Haryana', 'Himachal Pradesh',
'Jammu and Kashmir', 'Jharkhand', 'Karnataka', 'Kerala', 'Madhya Pradesh', 'Maharashtra',
'Manipur', 'Meghalaya', 'Mizoram', 'Nagaland', 'Odisha', 'Puducherry', 'Punjab',
'Rajasthan', 'Sikkim', 'Tamil Nadu', 'Telangana', 'Tripura', 'Uttar Pradesh',
'Uttarakhand', 'West Bengal']
crops = ['Arecanut', 'Barley', 'Banana', 'Blackpepper', 'Brinjal', 'Cabbage', 'Cardamom', 'Cashewnuts', 'Cauliflower',
'Coriander', 'Cotton', 'Garlic', 'Grapes', 'Horsegram', 'Jowar', 'Jute', 'Ladyfinger', 'Maize',
'Mango', 'Moong', 'Onion', 'Orange', 'Papaya', 'Pineapple', 'Potato', 'Rapeseed', 'Ragi', 'Rice',
'Sesamum', 'Soyabean', 'Sunflower', 'Sweetpotato', 'Tapioca', 'Tomato', 'Turmeric', 'Wheat']
seasons = ['Kharif', 'Rabi', 'Summer', 'Whole Year']
state = st.selectbox("Select State", states)
crop = st.selectbox("Select Crop", crops)
season = st.selectbox("Select Season", seasons)
pH = st.number_input("Soil pH Value", min_value=0.0, max_value=14.0, value=0.0)
rainfall = st.number_input("Rainfall (mm)", min_value=0.0, value=0.0)
temperature = st.number_input("Temperature (°C)", min_value=0.0, value=0.0)
area = st.number_input("Area (hectares)", min_value=0.0, value=0.0)
production = st.number_input("Production (tons)", min_value=0.0, value=0.0)
if st.button("Predict Yield"):
if state and crop and season and pH and rainfall and temperature and area and production:
state_lower = state.lower()
crop_lower = crop.lower()
season_lower = season.lower()
state_encoded = [0] * (len(states) - 1) if state_lower == 'andaman and nicobar islands' else [1 if s.lower() == state_lower else 0 for s in states if s.lower() != 'andaman and nicobar islands']
crop_encoded = [0] * (len(crops) - 1) if crop_lower == 'arecanut' else [1 if c.lower() == crop_lower else 0 for c in crops if c.lower() != 'arecanut']
season_encoded = [0] * (len(seasons) - 1) if season_lower == 'kharif' else [1 if s.lower() == season_lower else 0 for s in seasons if s.lower() != 'kharif']
input_features = np.array(state_encoded + crop_encoded + season_encoded + [pH, rainfall, temperature, area, production]).reshape(1, -1)
expected_num_features = len(states) + len(crops) + len(seasons) - 3 + 5
if input_features.shape[1] != expected_num_features:
st.error(f"Feature shape mismatch, expected: {expected_num_features}, got: {input_features.shape[1]}")
else:
predicted_yield = crop_yield_model.predict(input_features)
st.success(f'The predicted yield for the selected inputs is: {predicted_yield[0]:.2f} tons/hectare')
else:
st.error("Please enter all required values")
# Home
else:
img = "hero2.jpg"
st.title("Krishi Mitr")
st.write("##### Welcome to Krishi Mitr! Explore our tools in the sidebar to make informed agricultural decisions.")
st.image(img, width=750)
st.write("") # Leave some space after the image
st.write("### Overview") # Section title for introduction
st.write("Krishi Mitr is designed to empower farmers with advanced predictive tools. Predict rainfall accurately with our Ridge Regression model. Get personalized crop recommendations using our Random Forest algorithm tailored to your local conditions. Estimate crop yields confidently with a combination of CatBoost, XGBoost, and Decision Tree models. Assess Air Quality Index (AQI) with precision using our XGBoost model, fine-tuned with Grid Search CV. Harness these features to optimize farming strategies and increase productivity.")
st.write("### Find the Code at:")
st.write("Link: https://github.com/kanchanraiii/Krishi-Mitr")
st.write("Made with 💖 by Kanchan, Aaron and Saumyaa")