-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathprime-subtraction-operation.py
36 lines (31 loc) · 1.03 KB
/
prime-subtraction-operation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Time: O(p + nlogp)
# Space: O(p)
import bisect
# number theory, greedy, binary search
def linear_sieve_of_eratosthenes(n):
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return primes # len(primes) = O(n/(logn-1)), reference: https://math.stackexchange.com/questions/264544/how-to-find-number-of-prime-numbers-up-to-to-n
MAX_N = 10**3
PRIMES = linear_sieve_of_eratosthenes(MAX_N-1)
class Solution(object):
def primeSubOperation(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
for i in xrange(len(nums)):
j = bisect.bisect_left(PRIMES, nums[i]-nums[i-1] if i-1 >= 0 else nums[i])
if j-1 >= 0:
nums[i] -= PRIMES[j-1]
if i-1 >= 0 and nums[i-1] >=nums[i]:
return False
return True