-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcount-numbers-with-non-decreasing-digits.cpp
122 lines (110 loc) · 3.8 KB
/
count-numbers-with-non-decreasing-digits.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// Time: O(n^2), n = len(r)
// Space: O(n)
// math, stars and bars, combinatorics
class Solution {
public:
int countNumbers(string l, string r, int b) {
const auto& decrease = [](auto& digits){
for (int i = size(digits) - 1; i >= 0; --i) {
if (digits[i]) {
--digits[i];
break;
}
digits[i] = 9;
}
};
const auto& divide = [](const auto& digits, int base) {
vector<uint8_t> result;
result.reserve(size(digits));
int r = 0;
for (const auto& d : digits) {
int q = (r * 10 + d) / base;
r = (r * 10 + d) % base;
if (!empty(result) || q) {
result.emplace_back(q);
}
}
return pair(result, r);
};
const auto& to_digits = [](const auto& s) {
vector<uint8_t> result(size(s));
for (int i = 0; i < size(s); ++i) {
result[i] = s[i] - '0';
}
return result;
};
const auto& to_base = [&](auto digits, int base) {
vector<uint8_t> result;
while (!empty(digits)) {
auto [q, r] = divide(digits, base);
result.emplace_back(r);
digits = move(q);
}
reverse(begin(result), end(result));
return result;
};
const auto& count = [&](const auto& digits) {
const auto& digits_base = to_base(digits, b);
int result = 0;
int i = 0;
for (; i < size(digits_base); ++i) {
if (i - 1 >= 0 && digits_base[i - 1] > digits_base[i]) {
break;
}
for (int j = i - 1 >= 0 ? digits_base[i - 1] : 0; j < digits_base[i]; ++j) {
result = addmod(result, nHr((b - 1) - j + 1, size(digits_base) - (i + 1)));
}
}
if (i == size(digits_base)) {
result = addmod(result, 1);
}
return result;
};
auto digits_l = to_digits(l);
decrease(digits_l);
auto digits_r = to_digits(r);
return submod(count(digits_r), count(digits_l));
}
private:
int nHr(int n, int k) {
return nCr(n + k - 1, k);
}
int nCr(int n, int k) {
while (size(inv_) <= n) { // lazy initialization
fact_.emplace_back(mulmod(fact_.back(), size(inv_)));
inv_.emplace_back(mulmod(inv_[MOD % size(inv_)], MOD - MOD / size(inv_))); // https://cp-algorithms.com/algebra/module-inverse.html
inv_fact_.emplace_back(mulmod(inv_fact_.back(), inv_.back()));
}
return mulmod(mulmod(fact_[n], inv_fact_[n - k]), inv_fact_[k]);
}
uint32_t addmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
if (MOD - a <= b) {
b -= MOD; // relied on unsigned integer overflow in order to give the expected results
}
return a + b;
}
uint32_t submod(uint32_t a, uint32_t b) {
return addmod(a, (MOD - b) % MOD);
}
// reference: https://stackoverflow.com/questions/12168348/ways-to-do-modulo-multiplication-with-primitive-types
uint32_t mulmod(uint32_t a, uint32_t b) { // avoid overflow
a %= MOD, b %= MOD;
uint32_t result = 0;
if (a < b) {
swap(a, b);
}
while (b > 0) {
if (b % 2 == 1) {
result = addmod(result, a);
}
a = addmod(a, a);
b /= 2;
}
return result;
}
static const uint32_t MOD = 1e9 + 7;
vector<int> fact_ = {1, 1};
vector<int> inv_ = {1, 1};
vector<int> inv_fact_ = {1, 1};
};