-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathconnect_the_dots.py
54 lines (47 loc) · 1.73 KB
/
connect_the_dots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) 2019 kamyu. All rights reserved.
#
# Facebook Hacker Cup 2019 Round 1 - Connect the Dots
# https://www.facebook.com/hackercup/problem/2390352741015547/
#
# Time: O(NlogN)
# Space: O(N)
#
from heapq import heappush, heappop
def convert(p):
return (-p[0], -p[1])
def connect_the_dots():
N, H, V = map(int, raw_input().strip().split())
X1, X2, Ax, Bx, Cx, Dx = map(int, raw_input().strip().split())
Y1, Y2, Ay, By, Cy, Dy = map(int, raw_input().strip().split())
if N > H+V:
return -1
dots = [(X1, Y1), (X2, Y2)]
for i in xrange(2, N):
dots.append((((Ax * dots[i-2][0] + Bx * dots[i-1][0] + Cx) % Dx) + 1,
((Ay * dots[i-2][1] + By * dots[i-1][1] + Cy) % Dy) + 1))
dots.sort()
suffix_max_Y = [0]*(N+1)
for i in reversed(xrange(N)):
suffix_max_Y[i] = max(suffix_max_Y[i+1], dots[i][1])
result = float("inf")
max_heap, min_heap = [], []
heappush(max_heap, convert((0, -1)))
for i in xrange(N+1):
if i:
if (dots[i-1][1], i) < convert(max_heap[0]):
heappush(min_heap, convert(heappop(max_heap)))
heappush(max_heap, convert((dots[i-1][1], i)))
else:
heappush(min_heap, (dots[i-1][1], i))
f = N-i
if V-f < 0:
continue
g = max(0, min(N-H, V)-f) # g is increasing from 0
if len(max_heap) < g+1: # totally at most N times
heappush(max_heap, convert(heappop(min_heap)))
result = min(result,
(dots[i-1][0] if i else 0) +
max(convert(max_heap[0])[0], suffix_max_Y[i]))
return result
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, connect_the_dots())