-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaug.py
707 lines (561 loc) · 21.4 KB
/
aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
from __future__ import division
import cv2
import numpy as np
from numpy import random
import math
from sklearn.utils import shuffle
__all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',"RandomErasing",
'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate', 'RandomHShift',"CenterCrop","RandomVflip",
'ExpandBorder', 'RandomResizedCrop','RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]
def rotate_nobound(image, angle, center=None, scale=1.):
(h, w) = image.shape[:2]
# if the center is None, initialize it as the center of
# the image
if center is None:
center = (w // 2, h // 2)
# perform the rotation
M = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(image, M, (w, h))
return rotated
def scale_down(src_size, size):
w, h = size
sw, sh = src_size
if sh < h:
w, h = float(w * sh) / h, sh
if sw < w:
w, h = sw, float(h * sw) / w
return int(w), int(h)
def fixed_crop(src, x0, y0, w, h, size=None):
out = src[y0:y0 + h, x0:x0 + w]
if size is not None and (w, h) != size:
out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
return out
class FixRandomRotate(object):
def __init__(self, angles=[0,90,180,270], bound=False):
self.angles = angles
self.bound = bound
def __call__(self,img):
do_rotate = random.randint(0, 4)
angle=self.angles[do_rotate]
if self.bound:
img = rotate_bound(img, angle)
else:
img = rotate_nobound(img, angle)
return img
def center_crop(src, size):
h, w = src.shape[0:2]
new_w, new_h = scale_down((w, h), size)
x0 = int((w - new_w) / 2)
y0 = int((h - new_h) / 2)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out
def bottom_crop(src, size):
h, w = src.shape[0:2]
new_w, new_h = scale_down((w, h), size)
x0 = int((w - new_w) / 2)
y0 = int((h - new_h) * 0.75)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out
def rotate_bound(image, angle):
# grab the dimensions of the image and then determine the
# center
h, w = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
rotated = cv2.warpAffine(image, M, (nW, nH))
return rotated
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
class RandomRotate(object):
def __init__(self, angles, bound=False):
self.angles = angles
self.bound = bound
def __call__(self,img):
do_rotate = random.randint(0, 2)
if do_rotate:
angle = np.random.uniform(self.angles[0], self.angles[1])
if self.bound:
img = rotate_bound(img, angle)
else:
img = rotate_nobound(img, angle)
return img
class RandomBrightness(object):
def __init__(self, delta=10):
assert delta >= 0
assert delta <= 255
self.delta = delta
def __call__(self, image):
if random.randint(2):
delta = random.uniform(-self.delta, self.delta)
image = (image + delta).clip(0.0, 255.0)
# print('RandomBrightness,delta ',delta)
return image
class RandomContrast(object):
def __init__(self, lower=0.9, upper=1.05):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
# expects float image
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
# print('contrast:', alpha)
image = (image * alpha).clip(0.0,255.0)
return image
class RandomSaturation(object):
def __init__(self, lower=0.8, upper=1.2):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
image[:, :, 1] *= alpha
# print('RandomSaturation,alpha',alpha)
return image
class RandomHue(object):
def __init__(self, delta=18.0):
assert delta >= 0.0 and delta <= 360.0
self.delta = delta
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(-self.delta, self.delta)
image[:, :, 0] += alpha
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
# print('RandomHue,alpha:', alpha)
return image
class ConvertColor(object):
def __init__(self, current='BGR', transform='HSV'):
self.transform = transform
self.current = current
def __call__(self, image):
if self.current == 'BGR' and self.transform == 'HSV':
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif self.current == 'HSV' and self.transform == 'BGR':
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
else:
raise NotImplementedError
return image
class RandomSwapChannels(object):
def __call__(self, img):
if np.random.randint(2):
order = np.random.permutation(3)
return img[:,:,order]
return img
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
h, w, _ = image.shape
new_w, new_h = scale_down((w, h), self.size)
if w == new_w:
x0 = 0
else:
x0 = random.randint(0, w - new_w)
if h == new_h:
y0 = 0
else:
y0 = random.randint(0, h - new_h)
out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
return out
class RandomResizedCrop(object):
def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
self.size = size
self.scale = scale
self.ratio = ratio
def __call__(self,img):
if random.random() < 0.2:
return cv2.resize(img,self.size)
h, w, _ = img.shape
area = h * w
d=1
for attempt in range(10):
target_area = random.uniform(self.scale[0], self.scale[1]) * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
new_h, new_w = new_w, new_h
if new_w < w and new_h < h:
x0 = random.randint(0, w - new_w)
y0 = (random.randint(0, h - new_h))//d
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out
# Fallback
return center_crop(img, self.size)
class DownCrop():
def __init__(self, size, select, scale=(0.36,0.81)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
if attr_idx == 0:
self.scale=(0.64,1.0)
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/2.0
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = int(0.5*dw)
y0 = h-new_h
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class ResizedCrop(object):
def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
d=1
if attr_idx == 2:
self.scale=(0.36,0.81)
d=2
if attr_idx == 0:
self.scale=(0.81,1.0)
target_area = (self.scale[0]+self.scale[1])/2.0 * area
# aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
# if random.random() < 0.5:
# new_h, new_w = new_w, new_h
if new_w < w and new_h < h:
x0 = (w - new_w)//2
y0 = (h - new_h)//d//2
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
# cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
# cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
#
# cv2.waitKey(0)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomHflip(object):
def __call__(self, image):
if random.randint(2):
return cv2.flip(image, 1)
else:
return image
class RandomVflip(object):
def __call__(self, image):
if random.randint(2):
return cv2.flip(image, 0)
else:
return image
class Hflip(object):
def __init__(self,doHflip):
self.doHflip = doHflip
def __call__(self, image):
if self.doHflip:
return cv2.flip(image, 1)
else:
return image
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
return center_crop(image, self.size)
class UpperCrop():
def __init__(self, size, scale=(0.09, 0.64)):
self.size = size
self.scale = scale
def __call__(self,img):
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/2.0
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = int(0.5*dw)
y0 = 0
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out
# Fallback
return center_crop(img, self.size)
class RandomUpperCrop(object):
def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if random.random() < 0.2:
return img, attr_idx
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
# new_w = int(round(math.sqrt(target_area)))
# new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
y0 = (random.randint(0, h - new_h))//10
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomDownCrop(object):
def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if random.random() < 0.2:
return img, attr_idx
if attr_idx not in self.select:
return img, attr_idx
if attr_idx == 0:
self.scale=(0.64,1.0)
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
#
# new_w = int(round(math.sqrt(target_area)))
# new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
y0 = (random.randint((h - new_h)*9//10, h - new_h))
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
# cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
# cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
#
# cv2.waitKey(0)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomHShift(object):
def __init__(self, select, scale=(0.0, 0.2)):
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
do_shift_crop = random.randint(0, 2)
if do_shift_crop:
h, w, _ = img.shape
min_shift = int(w*self.scale[0])
max_shift = int(w*self.scale[1])
shift_idx = random.randint(min_shift, max_shift)
direction = random.randint(0,2)
if direction:
right_part = img[:, -shift_idx:, :]
left_part = img[:, :-shift_idx, :]
else:
left_part = img[:, :shift_idx, :]
right_part = img[:, shift_idx:, :]
img = np.concatenate((right_part, left_part), axis=1)
# Fallback
return img, attr_idx
class RandomBottomCrop(object):
def __init__(self, size, select, scale=(0.4, 0.8)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
dh = h - new_h
x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return bottom_crop(img, self.size), attr_idx
class BottomCrop():
def __init__(self, size, select, scale=(0.4, 0.8)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/3.*2.
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
dh = h-new_h
x0 = int(0.5*dw)
y0 = int(0.9*dh)
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return bottom_crop(img, self.size), attr_idx
class Resize(object):
def __init__(self, size, inter=cv2.INTER_CUBIC):
self.size = size
self.inter = inter
def __call__(self, image):
return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)
class ExpandBorder(object):
def __init__(self, mode='constant', value=255, size=(336,336), resize=False):
self.mode = mode
self.value = value
self.resize = resize
self.size = size
def __call__(self, image):
h, w, _ = image.shape
if h > w:
pad1 = (h-w)//2
pad2 = h - w - pad1
if self.mode == 'constant':
image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
self.mode, constant_values=self.value)
else:
image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
elif h < w:
pad1 = (w-h)//2
pad2 = w-h - pad1
if self.mode == 'constant':
image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
self.mode,constant_values=self.value)
else:
image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
if self.resize:
image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
return image
class AstypeToInt():
def __call__(self, image, attr_idx):
return image.clip(0,255.0).astype(np.uint8), attr_idx
class AstypeToFloat():
def __call__(self, image, attr_idx):
return image.astype(np.float32), attr_idx
import matplotlib.pyplot as plt
class Normalize(object):
def __init__(self,mean, std):
'''
:param mean: RGB order
:param std: RGB order
'''
self.mean = np.array(mean).reshape(3,1,1)
self.std = np.array(std).reshape(3,1,1)
def __call__(self, image):
'''
:param image: (H,W,3) RGB
:return:
'''
# plt.figure(1)
# plt.imshow(image)
# plt.show()
return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std
class RandomErasing(object):
def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
self.EPSILON = EPSILON
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
self.select = select
def __call__(self, img,attr_idx):
if attr_idx not in self.select:
return img,attr_idx
if random.uniform(0, 1) > self.EPSILON:
return img,attr_idx
for attempt in range(100):
area = img.shape[1] * img.shape[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.shape[2] and h <= img.shape[1]:
x1 = random.randint(0, img.shape[1] - h)
y1 = random.randint(0, img.shape[2] - w)
if img.shape[0] == 3:
# img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
# img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
# img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
# img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
else:
img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
# img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
return img,attr_idx
return img,attr_idx
if __name__ == '__main__':
import matplotlib.pyplot as plt
class FSAug(object):
def __init__(self):
self.augment = Compose([
AstypeToFloat(),
# RandomHShift(scale=(0.,0.2),select=range(8)),
# RandomRotate(angles=(-20., 20.), bound=True),
ExpandBorder(select=range(8), mode='symmetric'),# symmetric
# Resize(size=(336, 336), select=[ 2, 7]),
AstypeToInt()
])
def __call__(self, spct,attr_idx):
return self.augment(spct,attr_idx)
trans = FSAug()
img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
img_trans,_ = trans(img,5)
# img_trans2,_ = trans(img,6)
plt.figure()
plt.subplot(221)
plt.imshow(img)
plt.subplot(222)
plt.imshow(img_trans)
# plt.subplot(223)
# plt.imshow(img_trans2)
# plt.imshow(img_trans2)
plt.show()