-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathenkf.py
356 lines (341 loc) · 15.4 KB
/
enkf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
#from numpy.linalg import eigh # scipy.linalg.eigh broken on my mac
from scipy.linalg import eigh, cho_solve, cho_factor, svd, pinvh
def symsqrt_psd(a, inv=False):
"""symmetric square-root of a symmetric positive definite matrix"""
evals, eigs = eigh(a)
symsqrt = (eigs * np.sqrt(np.maximum(evals,0))).dot(eigs.T)
if inv:
inv = (eigs * (1./np.maximum(evals,0))).dot(eigs.T)
return symsqrt, inv
else:
return symsqrt
def symsqrtinv_psd(a):
"""inverse and inverse symmetric square-root of a symmetric positive
definite matrix"""
evals, eigs = eigh(a)
symsqrtinv = (eigs * (1./np.sqrt(np.maximum(evals,0)))).dot(eigs.T)
inv = (eigs * (1./np.maximum(evals,0))).dot(eigs.T)
return symsqrtinv, inv
def serial_ensrf(xmean,xprime,h,obs,oberrvar,covlocal,obcovlocal):
"""serial potter method"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
for nob,ob in zip(np.arange(nobs),obs):
# forward operator.
hxprime = np.dot(xprime,h[nob])
hxmean = np.dot(h[nob],xmean)
# state space update
hxens = hxprime.reshape((nanals, 1))
D = (hxens**2).sum()/(nanals-1) + oberrvar
gainfact = np.sqrt(D)/(np.sqrt(D)+np.sqrt(oberrvar))
pbht = (xprime.T*hxens[:,0]).sum(axis=1)/float(nanals-1)
kfgain = covlocal[nob,:]*pbht/D
xmean = xmean + kfgain*(ob-hxmean)
xprime = xprime - gainfact*kfgain*hxens
return xmean, xprime
def serial_ensrf_modens(xmean,xprime,h,obs,oberrvar,covlocal,z):
"""serial potter method"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
# if True, use gain from modulated ensemble to
# update perts. if False, use gain from original ensemble.
update_xprime = True
if z is None:
# set ensemble to square root of localized Pb
Pb = covlocal*np.dot(xprime.T,xprime)/(nanals-1)
evals, eigs = eigh(Pb)
evals = np.where(evals > 1.e-10, evals, 1.e-10)
nanals2 = eigs.shape[0]
xprime2 = np.sqrt(nanals2-1)*(eigs*np.sqrt(evals)).T
else:
# modulation ensemble
neig = z.shape[0]; nanals2 = neig*nanals; nanal2 = 0
xprime2 = np.zeros((nanals2,ndim),xprime.dtype)
for j in range(neig):
for nanal in range(nanals):
xprime2[nanal2,:] = xprime[nanal,:]*z[neig-j-1,:]
# unmodulated member is j=1, scaled by z[-1]
nanal2 += 1
xprime2 = np.sqrt(float(nanals2-1)/float(nanals-1))*xprime2
# update xmean using full xprime2
# update original xprime using gain from full xprime2
for nob,ob in zip(np.arange(nobs),obs):
# forward operator.
hxprime = np.dot(xprime2,h[nob])
hxprime_orig = np.dot(xprime,h[nob])
hxmean = np.dot(h[nob],xmean)
# state space update
hxens = hxprime.reshape((nanals2, 1))
hxens_orig = hxprime_orig.reshape((nanals, 1))
D = (hxens**2).sum()/(nanals2-1) + oberrvar
gainfact = np.sqrt(D)/(np.sqrt(D)+np.sqrt(oberrvar))
pbht = (xprime2.T*hxens[:,0]).sum(axis=1)/float(nanals2-1)
kfgain = pbht/D
xmean = xmean + kfgain*(ob-hxmean)
xprime2 = xprime2 - gainfact*kfgain*hxens
if not update_xprime:
D = (hxens_orig**2).sum()/(nanals-1) + oberrvar
gainfact = np.sqrt(D)/(np.sqrt(D)+np.sqrt(oberrvar))
pbht = (xprime.T*hxens_orig[:,0]).sum(axis=1)/float(nanals-1)
kfgain = covlocal[nob,:]*pbht/D
xprime = xprime - gainfact*kfgain*hxens_orig
return xmean, xprime
def bulk_ensrf(xmean,xprime,h,obs,oberrvar,covlocal,denkf=False):
"""bulk potter method"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
R = oberrvar*np.eye(nobs)
Rsqrt = np.sqrt(oberrvar)*np.eye(nobs)
Pb = np.dot(np.transpose(xprime),xprime)/(nanals-1)
Pb = covlocal*Pb
D = np.dot(np.dot(h,Pb),h.T)+R
if not denkf:
Dsqrt,Dinv = symsqrt_psd(D,inv=True)
else:
Dinv = cho_solve(cho_factor(D),np.eye(nobs))
kfgain = np.dot(np.dot(Pb,h.T),Dinv)
if not denkf:
tmp = Dsqrt + Rsqrt
tmpinv = cho_solve(cho_factor(tmp),np.eye(nobs))
gainfact = np.dot(Dsqrt,tmpinv)
reducedgain = np.dot(kfgain, gainfact)
else:
reducedgain = 0.5*kfgain
xmean = xmean + np.dot(kfgain, obs-np.dot(h,xmean))
hxprime = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals):
hxprime[nanal] = np.dot(h,xprime[nanal])
xprime = xprime - np.dot(reducedgain,hxprime.T).T
return xmean, xprime
def bulk_enkf(xmean,xprime,h,obs,oberrvar,covlocal,rs):
"""bulk enkf method with perturbed obs"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
R = oberrvar*np.eye(nobs)
Rsqrt = np.sqrt(oberrvar)*np.eye(nobs)
Pb = np.dot(np.transpose(xprime),xprime)/(nanals-1)
Pb = covlocal*Pb
D = np.dot(np.dot(h,Pb),h.T)+R
Dinv = cho_solve(cho_factor(D),np.eye(nobs))
kfgain = np.dot(np.dot(Pb,h.T),Dinv)
xmean = xmean + np.dot(kfgain, obs-np.dot(h,xmean))
obnoise = np.sqrt(oberrvar)*rs.standard_normal(size=(nanals,nobs))
obnoise_var = ((obnoise-obnoise.mean(axis=0))**2).sum(axis=0)/(nanals-1)
obnoise = np.sqrt(oberrvar)*obnoise/np.sqrt(obnoise_var)
hxprime = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals):
hxprime[nanal] = np.dot(h,xprime[nanal]) + obnoise[nanal]
xprime = xprime - np.dot(kfgain, hxprime[:,:,np.newaxis]).T.squeeze()
return xmean, xprime
def etkf(xmean,xprime,h,obs,oberrvar):
"""ETKF (use only with full rank ensemble, no localization)"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
# forward operator.
hxprime = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals):
hxprime[nanal] = np.dot(h,xprime[nanal])
hxmean = np.dot(h,xmean)
Rinv = (1./oberrvar)*np.eye(nobs)
YbRinv = np.dot(hxprime,Rinv)
pa = (nanals-1)*np.eye(nanals)+np.dot(YbRinv,hxprime.T)
pasqrt_inv, painv = symsqrtinv_psd(pa)
kfgain = np.dot(xprime.T,np.dot(painv,YbRinv))
enswts = np.sqrt(nanals-1)*pasqrt_inv
xmean = xmean + np.dot(kfgain, obs-hxmean)
xprime = np.dot(enswts.T,xprime)
return xmean, xprime
def getkf(xmean,xprime,h,obs,oberrvar):
"""GETKF (use only with full rank ensemble, no localization)"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
# forward operator.
hxprime = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals):
hxprime[nanal] = np.dot(h,xprime[nanal])
hxmean = np.dot(h,xmean)
sqrtoberrvar_inv = 1./np.sqrt(oberrvar)
YbRsqrtinv = hxprime * sqrtoberrvar_inv
u, s, v = svd(YbRsqrtinv,full_matrices=False,lapack_driver='gesvd')
sp = s**2+nanals-1
painv = (u * (1./sp)).dot(u.T)
kfgain = np.dot(xprime.T,np.dot(painv,YbRsqrtinv*sqrtoberrvar_inv))
xmean = xmean + np.dot(kfgain, obs-hxmean)
reducedgain = np.dot(xprime.T,u)*(1.-np.sqrt((nanals-1)/sp))
# ETKF form
# method 1
#pasqrt_inv = (u * (np.sqrt((nanals-1)/sp))).dot(u.T)
#xprime = np.dot(xprime.T, pasqrt_inv).T
# method 2
#xprime = xprime - np.dot(reducedgain,u.T).T
# this is equivalent to above, since u.T = np.dot((v.T/s).T,YbRsqrtinv.T)
#xprime = xprime - np.dot(reducedgain,np.dot((v.T/s).T,YbRsqrtinv.T)).T
# GETKF form
reducedgain = np.dot(reducedgain,(v.T/s).T)*sqrtoberrvar_inv
xprime = xprime - np.dot(reducedgain,hxprime.T).T
return xmean, xprime
def getkf_modens(xmean,xprime,h,obs,oberrvar,covlocal,z):
"""GETKF with modulated ensemble"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
if z is None:
raise ValueError('z not specified')
# modulation ensemble
neig = z.shape[0]; nanals2 = neig*nanals; nanal2 = 0
xprime2 = np.zeros((nanals2,ndim),xprime.dtype)
for j in range(neig):
for nanal in range(nanals):
xprime2[nanal2,:] = xprime[nanal,:]*z[neig-j-1,:]
nanal2 += 1
xprime2 = np.sqrt(float(nanals2-1)/float(nanals-1))*xprime2
# forward operator.
hxprime = np.empty((nanals2, nobs), xprime2.dtype)
hxprime_orig = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals2):
hxprime[nanal] = np.dot(h,xprime2[nanal])
for nanal in range(nanals):
hxprime_orig[nanal] = np.dot(h,xprime[nanal])
hxmean = np.dot(h,xmean)
sqrtoberrvar_inv = 1./np.sqrt(oberrvar)
YbRsqrtinv = hxprime * sqrtoberrvar_inv
u, s, v = svd(YbRsqrtinv,full_matrices=False,lapack_driver='gesvd')
sp = s**2+nanals2-1
painv = (u * (1./sp)).dot(u.T)
kfgain = np.dot(xprime2.T,np.dot(painv,YbRsqrtinv*sqrtoberrvar_inv))
xmean = xmean + np.dot(kfgain, obs-hxmean)
reducedgain = np.dot(xprime2.T,u)*(1.-np.sqrt((nanals2-1)/sp))
reducedgain = np.dot(reducedgain, (v.T/s).T)*sqrtoberrvar_inv
xprime = xprime - np.dot(reducedgain,hxprime_orig.T).T
return xmean, xprime
def etkf_modens(xmean,xprime,h,obs,oberrvar,covlocal,z,rs=None,po=False,ss=False,adjust_obnoise=False,denkf=False):
"""ETKF with modulated ensemble."""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
if z is None:
raise ValueError('z not specified')
# modulation ensemble
neig = z.shape[0]; nanals2 = neig*nanals; nanal2 = 0
xprime2 = np.zeros((nanals2,ndim),xprime.dtype)
for j in range(neig):
for nanal in range(nanals):
xprime2[nanal2,:] = xprime[nanal,:]*z[neig-j-1,:]
nanal2 += 1
normfact = np.sqrt(float(nanals2-1)/float(nanals-1))
xprime2 = normfact*xprime2
#var = ((xprime**2).sum(axis=0)/(nanals-1)).mean()
#var2 = ((xprime2**2).sum(axis=0)/(nanals2-1)).mean()
# 1st nanals members are original members multiplied by scalefact
# (which is proportional to 1st eigenvector of cov local matrix)
scalefact = normfact*z[-1]
#import matplotlib.pyplot as plt
#plt.plot(np.arange(80), z[-1])
#plt.title('1st eigenvector of localization matrix')
#plt.xlabel('j')
#plt.ylabel('eigenvector amplitude')
#plt.ylim(-1.2,0.2)
#plt.axhline(0,color='k')
#plt.savefig('eig1.png')
#print np.abs(z[-1]).max()/np.abs(z[-1]).min()
#plt.show()
#raise SystemExit
# forward operator.
hxprime = np.empty((nanals2, nobs), xprime2.dtype)
hxprime_orig = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals2):
hxprime[nanal] = np.dot(h,xprime2[nanal])
for nanal in range(nanals):
hxprime_orig[nanal] = np.dot(h,xprime[nanal])
hxmean = np.dot(h,xmean)
YbRinv = np.dot(hxprime,(1./oberrvar)*np.eye(nobs))
pa = (nanals2-1)*np.eye(nanals2)+np.dot(YbRinv,hxprime.T)
pasqrt_inv, painv = symsqrtinv_psd(pa)
kfgain = np.dot(xprime2.T,np.dot(painv,YbRinv))
xmean = xmean + np.dot(kfgain, obs-hxmean)
if denkf:
xprime = xprime - np.dot(0.5*kfgain,hxprime_orig.T).T
elif po: # use perturbed obs to update ensemble perts
if rs is None:
raise ValueError('must pass random state if po=True')
# generate obnoise, make sure it has zero mean
obnoise = rs.standard_normal(size=(nanals,nobs))
obnoise = obnoise - obnoise.mean(axis=0)
if adjust_obnoise:
# remove part of obnoise that lies in suspace of hxprime
cxy = np.dot(obnoise, hxprime_orig.T)
cxx = np.dot(hxprime_orig,hxprime_orig.T)
# pseudo-inverse of a symmetrix matrix (same as above)
cxxinv = pinvh(cxx)
# compute multivariate regression matrix, find part of obnoise that
# is linearly related to hxprime, subtract from obnoise.
obnoise = obnoise - np.dot(np.dot(cxy,cxxinv), hxprime_orig)
# make sure mean is still zero
obnoise = obnoise - obnoise.mean(axis=0)
# rescale so obnoise has expected variance.
#obnoise=np.sqrt(oberrvar/((obnoise**2).sum(axis=0)/(nanals-1)))*obnoise
obnoise=np.sqrt(oberrvar/(((obnoise**2).sum(axis=0)/(nanals-1))).mean())*obnoise
# check that cross-covariance really is zero
#cxy = np.dot(obnoise, hxprime_orig.T)
#print cxy.min(), cxy.max()
#raise SystemExit
hxprime = obnoise + hxprime_orig
xprime = xprime - np.dot(kfgain,hxprime.T).T
elif ss: # use stochastic subsampling to select posterior perturbations.
pasqrt_inv, painv = symsqrtinv_psd(pa)
enswts = np.sqrt(nanals2-1)*pasqrt_inv
xprime_full = np.dot(enswts.T,xprime2)
# deterministic sub-sampling
#xprime = xprime_full[np.random.choice(nanal2, nanals, replace=False)]
# stochastic sub-sampling (nanals random linear combos of nanals
# posterior perturbations)
#print ((xprime_full**2).sum(axis=0)/(nanals2-1)).mean()
ranwts = rs.standard_normal(size=(nanals,nanals2))/np.sqrt(nanals2-1)
ranwts_mean = ranwts.mean(axis=1)
# make sure weights sum to zero and stdev=1
ranwts = ranwts - ranwts_mean[:,np.newaxis]
ranwts_stdev = np.sqrt((ranwts**2).sum(axis=1))
ranwts = ranwts/ranwts_stdev[:,np.newaxis]
xprime = np.dot(ranwts,xprime_full)
#print ((xprime**2).sum(axis=0)/(nanals-1)).mean()
#raise SystemExit
xprime = xprime - xprime.mean(axis=0)
else:
# compute reduced gain to update perts
#D = np.dot(hxprime.T, hxprime)/(nanals2-1) + oberrvar*np.eye(nobs)
#Dsqrt = symsqrt_psd(D) # symmetric square root of pos-def sym matrix
#tmp = Dsqrt + np.sqrt(oberrvar)*np.eye(nobs)
#tmpinv = cho_solve(cho_factor(tmp),np.eye(nobs))
#gainfact = np.dot(Dsqrt,tmpinv)
#kfgain = np.dot(kfgain, gainfact)
#hxprime = hxprime[0:nanals]/scalefact
#xprime = xprime - np.dot(kfgain,hxprime.T).T
# update modulated ensemble perts with ETKF weights
pasqrt_inv, painv = symsqrtinv_psd(pa)
enswts = np.sqrt(nanals2-1)*pasqrt_inv
# just use 1st nanals posterior members, rescaled.
#xprime2 = np.dot(enswts.T,xprime2)
#xprime = xprime2[0:nanals]/scalefact
# this is equivalent, but a little faster
xprime = np.dot(enswts[:,0:nanals].T,xprime2)/scalefact
#xprime_mean = np.abs(xprime.mean(axis=0))
#xprime = xprime-xprime_mean
# make sure mean of posterior perts is zero
#if xprime_mean.max() > 1.e-6:
# raise ValueError('nonzero perturbation mean')
return xmean, xprime
def letkf(xmean,xprime,h,obs,oberrvar,obcovlocal):
"""LETKF (with observation localization)"""
nanals, ndim = xprime.shape; nobs = obs.shape[-1]
# forward operator.
hxprime = np.empty((nanals, nobs), xprime.dtype)
for nanal in range(nanals):
hxprime[nanal] = np.dot(h,xprime[nanal])
hxmean = np.dot(h,xmean)
obcovlocal = np.where(obcovlocal < 1.e-13,1.e-13,obcovlocal)
xprime_prior = xprime.copy(); xmean_prior = xmean.copy()
# brute force application of ETKF for each state element - very slow!
# assumes all state variables observed.
ominusf = obs - np.dot(h,xmean_prior)
for n in range(ndim):
Rinv = np.diag(obcovlocal[n,:]/oberrvar)
YbRinv = np.dot(hxprime,Rinv)
pa = (nanals-1)*np.eye(nanals)+np.dot(YbRinv,hxprime.T)
evals, eigs = eigh(pa)
painv = np.dot(np.dot(eigs,np.diag(np.sqrt(1./evals))),eigs.T)
kfgain = np.dot(xprime_prior[:,n].T,np.dot(np.dot(painv,painv.T),YbRinv))
enswts = np.sqrt(nanals-1)*painv
xmean[n] = xmean[n] + np.dot(kfgain, ominusf)
xprime[:,n] = np.dot(enswts.T,xprime_prior[:,n])
return xmean, xprime