-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGenerateAnchors.py
41 lines (38 loc) · 1.45 KB
/
GenerateAnchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from absl import app, flags, logging
from absl.flags import FLAGS
import numpy as np
from kmeans import kmeans, avg_iou
import tensorflow as tf
from yolov3_tf2.models import (
YoloV3, YoloV3Tiny,
)
import yolov3_tf2.dataset as dataset
from tqdm import tqdm
flags.DEFINE_string('dataset','./data/AOLP_tfrecords/AOLP_train_*-of-*_*-of-*.records','path to dataset')
flags.DEFINE_string('classes','./data/MOT2020.names', 'path to classes file')
flags.DEFINE_integer('size', 416, 'image size')
flags.DEFINE_integer('clusters', 9, 'Number of clusters')
def main(_argv):
train_dataset = dataset.load_tfrecord_dataset(FLAGS.dataset, FLAGS.classes, FLAGS.size)
data = []
for imgs, labels in tqdm(train_dataset):
for x1, y1, x2, y2, label in labels:
if x1 == 0 and x2 == 0:
continue
data.append([x2-x1, y2-y1])
out = kmeans(np.asarray(data), k=FLAGS.clusters)
print("Accuracy: {:.2f}%".format(avg_iou(np.asarray(data), out) * 100))
print("Boxes:\n {}".format(out))
#
ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist()
print("Ratios:\n {}".format(sorted(ratios)))
#
# sort BB according to their area.
areas = np.multiply(out[:, 0], out[:, 1])
out_sorted = out[sorted(range(len(areas)), key=lambda k: areas[k]), :]
print("Sorted boxes according to area:\n {}".format(out_sorted))
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass